• 제목/요약/키워드: LQR 제어 시스템

검색결과 126건 처리시간 0.031초

자기위치 유지시스템 제어기의 설계변수에 관한 연구 (A Study on the Design Parameters of Controller for Dynamic Positioning System)

  • 이동연;하문근
    • 대한조선학회논문집
    • /
    • 제40권1호
    • /
    • pp.8-19
    • /
    • 2003
  • Special purpose vessels such as drillship and ocean research vessels install the DPS(Dynamic Positioning System) to maintain the position and heading for long-time operation. This paper deals with the design parameters for the control theory and filter algorithms of DP system. for the environmental loadings wind forces, current forces and wave forces were considered. In order to estimate the low frequency motions without first-order wave motion, the Kalman filter was used and it was assumed that the first-order wave forces correspond to system noises and first-order wave motions are measurement noises. In this simulation, the length of research vessel is 65 meters and it has four thrusters to maintain the position. The ability of keeping position and heading was confirmed. For the calculation of thruster input the LQR and LOI control theory were adopted and the effects of gain were investigated.

Networked Control System Design Accounting for Time-Delays with Application to Inverted Pendulum

  • Park, Byung-In;Yoo, Ho-Jun;Kwon, Oh-Kyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1470-1473
    • /
    • 2003
  • In this paper the networked control systems (NCS) problem is discussed where plants and controllers are distributed and interconnected by a common network. NCS is designed with LQ regulator and applied to an inverted pendulum accounting for the multiple time delays. We are to deals with a networked control system with a single controller, multiple sensors and multiple actuators. Since these parts are distributed, they are interconnected by communication networks. An NCS with LQ regulator is designed and applied to an inverted pendulum as a benchmark plant to check its performance under time delays induced by the network. Network induced delays are composed of two parts. One is the delay from controller to plant, and another is from plant to controller. They are assumed to be constant in this paper, and the plant and controller are discretized. To apply the LQ regulator the NCS model is transformed to a standard model with delayed states as state variable. And real network induced delay is measuring in TCP/IP network assuming that two delays are constant.

  • PDF

Application of LQR for Phase-Locked Loop Control Systems

  • Khumma, Somyos;Benjanarasuth, Taworn;Isarakorn, Don;Ngamwiwit, Jongkol;Wanchana, Somsak;Komine, Noriyuki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.520-523
    • /
    • 2004
  • A phase-locked loop control system designed by using the linear quadratic regulator approach is presented in this paper. The system thus designed is optimal system when system is in locked state and the parameter value of loop filter which is an active PI filter can be obtained easily. By considering the structure of loop filter of phase-locked loop is included in the process to be controlled, a type 1 servo system can be constructed when voltage control oscillator is considered as an integrator. The integral gain of the proposed system obtained by linear quadratic regulator approach can be used as an optimal value to design the parameter of loop filter. The implemented result in controlling the second-order lag pressure process by using the proposed scheme show that the system response is fast with no overshoot and no steady-state error. Furthermore, the experimental results are also shown in term of output disturbance effect rejection, tracking and process parameter changed.

  • PDF

Swinging-up the Rotational Inverted Pendulum with Limited Sector of Arm Angle via Energy Control

  • Nundrakwang, Songmoung;Cahyadi, Adha I.;Isarakorn, Don;Benjanarasuth, Taworn;Ngamwiwit, Jongkol;Komine, Noriyuki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.2116-2119
    • /
    • 2005
  • Inverted pendulum is a classical example and a famous tool for testing the effectiveness of many control schemes. Owing to their nonlinearity and unstable characteristic, a controller development either for swinging-up or stabilizing its upright position had been a great interest of many researchers. In this paper, the swinging-up control of the inverted pendulum using energy control will be presented. However, the saturation function in its control law could harm the experimental equipments. In addition, this swinging-up method did not consider limited sector of the arm angle to avoid another hazard, for instance, the twisted cable in the apparatus. Therefore, in this paper the position control of the arm angle using simple PD control in accordance with the energy control is proposed. Consequently, the limited arm sector angle can be achieved and the saturation function can also be replaced effectively by the PD control.

  • PDF

TS 퍼지 모델을 이용한 최적 제어기 설계 및 비선형 시스템에서의 응용 (Design of Optimal Controller for TS Fuzzy Models and Its Application to Nonlinear Systems)

  • 장욱;주영훈;박진배
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제49권2호
    • /
    • pp.68-73
    • /
    • 2000
  • This paper addresses the analysis and design of fuzzy control systems for a class of complex nonlinear systems. Firstly, the nonlinear system is represented by Takagi-Sugeno(TS) fuzzy model and the global controller is constructed by compensating each linear model in the rule of TS fuzzy model. The design of conventional TS fuzzy-model-based controller is composed of two processes. One is to determine the static state feedback gain of each local model and the other is to validate the stability of the designed fuzzy controller. In this paper, we propose an alternative methods for the design of TS fuzzy-model-based controller. The design scheme is based on the extension of conventional optimal control theory to the design of TS fuzzy-model-based controller. By using the proposed method, the design and stability analysis of the TS fuzzy model-based controller is reduced to the problem of finding the solution of a set of algebraic Riccati equations. And we use the recently developed interior point method to find the solution of AREs, where AREs are recast as the LMI formulation. A numerical simulation example is given to show the effectiveness and feasibiltiy of the proposed fuzzy controller design method.

  • PDF

곤충모방 날갯짓 비행체의 LQ 제어기 설계 (Linear Quadratic Controller Design of Insect-Mimicking Flapping Micro Aerial Vehicle)

  • 김성근;김인래;김승균;석진영
    • 한국항행학회논문지
    • /
    • 제21권5호
    • /
    • pp.450-458
    • /
    • 2017
  • 본 연구에서는 곤충모방 날갯짓 비행체의 모델링과 제자리비행을 위한 자세제어 및 고도제어기를 설계하여 동역학 모델을 이용한 시뮬레이션을 수행하고 그 결과를 분석하였다. 곤충모방 날갯짓 비행체의 간략화한 날갯짓 운동, 날갯짓의 병진운동 및 회전운동에 대한 공력, 동체 동역학에 대해 수치모델링을 수행하였다. 제자리비행 자세제어를 위해 날갯짓 비행체가 가지는 시변 비선형 시스템을 선형화하여 설계한 LQR(Linear Quadratic Regulator) 제어기법을 통하여 자세안정화를 적용하였으며 PID 제어기법을 통해 고도제어를 수행하였다. 수치 시뮬레이션을 통해 설계된 모델과 제어기의 성능을 확인하였으며 제자리비행을 위한 자세안정화 및 고도 제어가 안정적으로 수행되는 것을 확인하였다. 또한 날갯짓에 의해 발생하는 주기적인 피칭 모멘트를 주기적인 제어입력을 통해 임계 안정하도록 자세 안정화를 수행하는 것을 확인 하였다.

나노급 초정밀 위치결정 시스템에 대한 슬라이딩 모드 제어기 설계 (Modified Sliding Mode Control for Ultra-precision Positioning System)

  • 최인성;김형석;이우람;유관호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년 학술대회 논문집 정보 및 제어부문
    • /
    • pp.348-350
    • /
    • 2006
  • In this paper, we design a new controller for an ultra-precision positioning system. In general, time optimal control enables to reach a target position faster than others. However it shows a weakness to chattering effect. In order to solve the problem, a new control algorithm based on sliding mode control is proposed. The suggested controller is composed of LQR control and sliding mode control. By performing some simulations, we prove that the proposed controller is more robust than time optimal control under the circumstance of parameter uncertainties and external disturbances.

  • PDF

도립 전자 시스템의 모델링과 LQ제어에 관한 연구 (A Study on Modeling and LQ Control of Inverted Pendulum System)

  • 양주호;정광교
    • 수산해양기술연구
    • /
    • 제30권3호
    • /
    • pp.199-208
    • /
    • 1994
  • The inverted pendulum is one of the control mechanism that has been frequently used to verify the control theory in the laboratory. In this paper, the author made an inverted pendulum driven by DC servomotor with a simple DC motor drive circuit, and constituted a control system. The control mechanism is modeled, and identified parameters of inverted pendulum system by experimental method. The author used the LQ regulator as control algorithm and the minimum order observer algorithm to observe states that can not be measured. And the validity of parameter identification and the excellent performance of the control system designed by LQR are confirmed.

  • PDF

자율 주행 헬리콥터 시스템의 지능 힘제어 응용 (Intelligent Force Control Ap plication of an Autonomous Helicopter System)

  • 엄일용;정슬
    • 대한임베디드공학회논문지
    • /
    • 제6권5호
    • /
    • pp.303-309
    • /
    • 2011
  • In this paper, an intelligent force control technique is applied to an autonomous helicopter. Although most research on the autonomous helicopter system is about navigation and control, force control of an autonomous helicopter system is quite new and not presented yet. After controlling the position of the helicopter by the LQR method, force control is applied. The adaptive impedance force control algorithm is introduced and tested to regulate the desired force under unknown location and stiffness of the environment. To compensate for uncertainty from outer disturbance, a neural network is added to form an intelligent force control framework. Simulation studies show that the proposed force control algorithm works well.