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Abstract: Inverted pendulum is a classical example and a famous tool for testing the effectiveness of many control schemes. Owing
to their nonlinearity and unstable characteristic, a controller development either for swinging-up or stabilizing its upright position had
been a great interest of many researchers. In this paper, the swinging-up control of the inverted pendulum using energy control will
be presented. However, the saturation function in its control law could harm the experimental equipments. In addition, this swinging-
up method did not consider limited sector of the arm angle to avoid another hazard, for instance, the twisted cable in the apparatus.
Therefore, in this paper the position control of the arm angle using simple PD control in accordance with the energy control is
proposed. Consequently, the limited arm sector angle can be achieved and the saturation function can also be replaced effectively by
the PD control.  
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1. INTRODUCTION
Swinging-up of inverted pendulum has been considered by

many researchers for many years. Some swinging-up ideas
recently proposed including sliding-mode control incorporated
with arm position control [1], feedback linearization [2] and
energy control [3]. The energy control will be adopted as an
approach in this paper due to its simplicity.

The swinging-up strategy using energy control is simple.
The energy is pumped to the system to increase the energy
level of the pendulum. The way of pumping the energy is by
giving some acceleration to the pendulum pivot i.e. the arm
angle, whose direction is determined by the information of the
rate of the injected energy. As the exact control law is difficult
to be implemented therefore when prescribed energy level is
achieved, it must be switched to the stabilizing control law to
catch and stabilize the inverted pendulum in the upright
position. Consequently, there will be two separated controllers
e.g. the swinging-up control and the stabilizing control. In this
paper, instead of using saturation function [3], the swinging-
up controller using the position control of the arm angle with
simple PD control in accordance with the energy control is
proposed. This implies to two advantages: firstly the saturation
function can be replaced properly, and secondly the limited
sector of arm angle can be achieved. On the other hand, for the
stabilizing controller, the LQR method [4] will be employed to
find the state feedback gain matrix and the integral gain.

2. ROTATIONAL INVERTED PENDULUM

2.1 Model of the system
The rotational inverted pendulum is a SIMO system with

motor torque as the input. Employing the Euler-Lagrange
equation, a nonlinear model of the inverted pendulum system
can be obtained. It is should be noted here that the dynamics
of rotational inverted pendulum will be different to those of
inverted pendulum on cart due to the effect of the rotating
arm. The derivation of the rotational inverted pendulum is
omitted since it can be found in many publications. In this

paper, the derivation is taken from [5] by neglecting some part
of the rotational inverted pendulum such as the motor
dynamics, the moment of inertia of the rotating arm and the
pendulum rod for the sake of simplicity. The model of the
inverted pendulum shown in Fig. 1 can be described as the
nonlinear differential equation in the following equations
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where θ  is the pendulum angle, β is the rotating arm angle,
J , m , l , R , u  and g are respectively DC motor moment of

inertia, inverted pendulum mass, length of the pendulum,
length of the pendulum arm, input torque acting of the arm
pivot and gravity acceleration.

In the compact form those can be expressed as

( , )x f x u= (5)
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T
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2.2 Linearization
In order to design the stabilizing control described later, this

nonlinear model of the rotational inverted pendulum needs to
be linearized around the upright position i.e. 0x = and 0u = as
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where A  and B are respectively expressed as
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It is seen that A  is rank deficient and having at least one
positive eignvalue. The main interest is to control the
pendulum angle and the rotating arm angle. Therefore, the
output equation is chosen as

y Cx= (7)
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Fig. 1 Experimental apparatus in laboratory.

3. CONTROLLER DESIGN

3.1 Swinging-up controller
Let’s consider only the single inverted pendulum which is

obtained by fixing its pivot to the arm of the inverted
pendulum shown in Fig. 2. The equation of motion then can be
simplified as follows

2

2
1 ( sin cos )
2p
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where pJ is the moment of inertia of the pendulum and a  is
approximated to be the acceleration of the rotating arm or in
this case
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Fig. 2 Inverted pendulum when the base is fixed to its arm.

The total energy of eq. (8) is given by

21 cos
2 pE J mglθ θ= + . (10)

It should be noticed that the potential energy is chosen such
that the arm position has zero energy level. In order to know
that the energy is pumped correctly, we must obtain the
direction whether the energy is injected or removed from the
system. It can be determined from the rate of energy as

sin cospE J mgl malθθ θ θ θ θ= − = − . (11)

Therefore, we can control the energy of inverted pendulum
instead of controlling the system directly. The last equation
tells us that the energy can be pumped to the system when the
arm acceleration a  is in the opposite direction of cosθ θ . If
the acceleration is enough, we can drive the energy to desired
level then we set acceleration to zero, at which the inverted
pendulum can be swung up in one swing. If the acceleration is
not enough, we can apply the maximum arm angle
acceleration, however multiple swings will be needed to bring
the pendulum to the inverted position. As described in [3], the
appropriate control law is u mRa≈ , with a  is chosen as

( ( ) sgn( cos ))da sat E E θ θ= Ψ − ⋅ (12)

where Ψ is a constant gain, dE  is the desired energy level,
sgn is the sign function and sat is the saturation function.
Suppose that the input torque saturates to mτ± which results to
the saturated arm angle acceleration ma± , with the choice of
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which is negative semi definite. Moreover since the pendulum
cannot stay identically in 2

πθ = ± , then the energy must be
driven toward the desired energy.

In reality this situation cannot be assured. As the energy is
computed using the information of state equations, the
accuracy of its information relies on the accuracy of the state
variables as well and thus it is very difficult to obtain the
accurate control law. Therefore, it motivates us to switch to
another controller to catch the inverted pendulum when it is
around the upright position.

In addition, in the control law, the saturation function is not
preferred as the DC motor using maximum torque will always
be applied. We also do not know how many times the
pendulum arm will rotate. Thus in this paper, the swinging-up
control using modified control law is proposed. Let’s consider
the arm angle equation of motion of the rotational inverted
pendulum equation of motion in eq. (4). In the swinging-up
stages we can assume that the DC motor moment of inertia is
the most significant compared to the other inertia factors,
therefore it can be simplified to be

1 ( )d u b
dt J
β β β= = − + . (14)

Then a simple position control using proportional and
derivative (PD) control  can be designed by setting the control
law u as follows

( )p du k r kβ β= − − (15)

where pk and dk are the proportional and the derivative gain

2117



respectively, r is the reference whose value is determined
from the information of energy given by

sgn( cos )cr r θ θ= − (16)

with cr is positive constant. Consequently the control law
proposed by [3] as shown in eq. (12) can be replaced by eqs.
(15) together with (16). The structure of swinging-up control
scheme is depicted in Fig. 3.

The advantage of our proposed method is the sector of the
arm angle is restricted within cr± radian sector of arm angle.
Moreover, the saturation function can be replaced effectively
by the arm angle position control. Despite the swinging-up
period is longer than [3] but we have a freedom in choosing
the PD gains to speed up the swinging-up response.
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Fig. 3 Swinging-up control system structure.

3.2 Stabilizing controller
The structure of stabilizing control is depicted in Fig. 4. An

integrator is augmented to the arm angle in order to reject the
offset occurred in the response due to uncertainty in the
hardware [4]. Let the error signal is denoted by

( ) ( ) ( )e t r t y t= − , then defining the new state variable
( ) ( )ix t e t= the augmented system can be expressed as
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where y is the controlled output of the arm angle and
[ ]0 0 1 0H = which is obtained from the 2nd row of C

matrix. In order to stabilize the upright position the control
law
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that minimizes the performance index
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Fig. 4 Stabilizing control system structure.

Finally the optimal control law is obtained by integrating the
control law (18) as follows

 i iu Kx k x= − + (21)

4. EXPERIMENTAL RESULTS

The experimental apparatus is depicted in Fig. 5. It consists
of three main parts: the inverted pendulum system, the
interfaces and the digital controller. The pendulum system
composes of pendulum, rotating-arm, a high torque permanent
magnet DC motor and two angular positions sensors to detect
the pendulum angle   and the arm position angle. The interface
devices are two microcontrollers PIC16C55 to filter the
quadrature signal from each encoder, one microcontroller
89C1051 as a sampling clock generator, one eight-bit D/A
converter and servo amplifier. A personal computer with Intel
Pentium II 350 MHz processor is used as the digital controller.
The control program is written in C language and the sampling
period is set at 25 milliseconds. The parameters of the
rotational inverted pendulum are depicted in table 1.

Fig. 5 Experimental apparatus.

Table 1 Parameter of the rotational inverted pendulum.
Pendulum mass ( m ) 0.05 kg
Pendulum length ( l ) 0.48 m
Arm length ( R ) 0.47 m
Moment of inertia ( J ) 0.03264 2kg m⋅
Viscous coefficient ( b ) 0.00351 2 /kg m s⋅

In order to swing the pendulum up as fast as possible, the
response of the position control of the arm angle must also be
fast enough. However, the choice PD gains to make
unnecessarily fast response of the position control will make
the position control being superior over the energy control. It
means that the energy cannot be pumped to the system even
though the direction of energy has not changed its sign.

Based on those considerations, in the experiment the
proportional gain   and the derivative gain using trial and error
are found to be -1.3056 and -0.3299 respectively. The
reference constant   is set to be 1 radian and the condition for
the control switching is chosen in the region of attraction of
the stabilizing controller around 0.1 radian. For the stabilizing
controller using Q=diag[0.8 0 0.4 0] and R=1, the optimal
state feedback gains and integral gain are respectively found
as -5.6365,-1.1789, -0.8844, -0.678 and -0.3164. From Fig. 6
the swinging-up results show that the pendulum can be
brought to the upright position in approximately 4 seconds and
the arm angle can also be brought back to zero radian line.
Moreover, during the swinging-up period the arm angle is
bounded within 2 radians sector of arm angle. The control
signal is shown in Fig. 7. It is also seen that during swinging-
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up stage the control signal is peaked in several intervals
implies to energy saving.
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Fig. 6 Responses of the system.
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Fig. 7 Control signal.

5.  CONCLUSION

Swinging-up control using energy based approach with
restricted sector of arm angle is studied in this paper. The
position control using proportional plus derivative scheme is
proposed to replace the saturation function. The experimental
results show that the pendulum can be swung-up to the
inverted position effectively and its arm angle is also bounded
in certain sector of angle.
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