• Title/Summary/Keyword: LQG/LTR Controller

Search Result 66, Processing Time 0.024 seconds

Design Procedure of Robust LQG/LTR Controller of TCSC for Damping Power System Oscillations (전력시스템 동요 억제를 위한 TCSC의 강인한 LQG/LTR 제어기 설계절차에 관한 연구)

  • Son, Kwang-Myoung;Lee, Tae-Gee;Jeon, In-Su
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.6
    • /
    • pp.30-39
    • /
    • 2002
  • This paper deals with the design of a robust LQC/LTR (Linear Quadratic Gaussian with Loop Transfer Recovery) controller of the TCSC for the power system oscillation damping enhancement. Designing LQG/LTR controller involves several design parameter adjustment processes for performance improvement. this paper proposes a systematic design parameter adjustment procedure which is suitable for robust multi-monde stabilization. The designed controller is verified by nonlinear power system simulation, which shows that the controller is effective for damping power system oscillations.

Implementation and performance analysis of digital servo controller using LQG/LTR method (LQG/LTR 방법을 이용한 견실한 디지탈 서어보 제어기 실현 및 성능분석)

  • 최중락;이장규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.570-574
    • /
    • 1987
  • The robust servo controller is designed by the procedure of LQG/LTR method in the continuous-time domain. This design results is equivalently converted to the discrete-time suboptimal LQG in order to implement by the microcomputer system. The LTP, condition of the discrete-time LQG is analyzed and approved by the experiments against the uncertainty of real plant, the discretized LQG /LTR control shows the good robustness.

  • PDF

Design of a Robust Turret-Gun Servo Controller Using LQG/LTR Method (LQG/LTR 방법을 이용한 강인한 터렛서보 제어기 설계)

  • Kim, In-Hwan;Kim, Jong-Hwa;Lee, Man-Hyung
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.66-69
    • /
    • 1989
  • In this paper, the LQG/LTR design method is applied of the third order linear time invariant plant model which is the SISO turret-gun servo-mechanism. The dynamic characteristics and the performance of the LQG/LTR controller are analyzed by the computer simulation, and compared with those of PID controller which has been already applied to the turret servomechanism under the sane design specifications.

  • PDF

LQG/LTR controller design for ground alignment of intertial platform

  • Kim, Jong-Kwon;Shin, Yong-Jin;Cho, Kyeum-Rae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.372-375
    • /
    • 1995
  • The LQG/LTR controller design procedure for ground alignment of inertial platform is accomplished. Due to the alignment system dynamics, LQG/LTR controller is proposed to overcome both singular problem and nonsquare problem. To show the effectiveness of this control system, computer simulation was performed under the assumption of random sway motion.

  • PDF

A design of controller for robust servomechanism using LQG/LTR method (LQG/LTR 방법을 이용한 강인한 서어보메커니즘의 제어기 설계)

  • 최중락;이장규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.483-487
    • /
    • 1986
  • The LQG/LTR method is applied to the real servomechanism with the unknown modeling error and system noise variance Q$_{2}$. The equivalent discretized LQG controller is implemented on the 16-bit microcomputer and the experimental results show the improved stability and the satisfactory performance when the noise variance Q$_{2}$ is increased infinitly.

  • PDF

Motion Analysis and LQG/LTR Control of a Proportional Solenoid Valve (비례 솔레노이드 밸브의 운동해석 및 LQG/LTR 제어)

  • Kim, Ki-Bum;Kim, In-Soo;Kim, Yeung-Shik;Kim, Jun-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.12
    • /
    • pp.1607-1612
    • /
    • 2011
  • In this study, dynamic analysis of a proportional solenoid valve is performed, and an LQG/LTR controller with an integrator is designed to control the proportional solenoid valve. The dynamic characteristic of a valve is identified using experimental data by employing the frequency-domain modeling technique. The purpose of LQG/LTR control with an integrator is to enhance the system response and to improve the tracking accuracy for a complex input signal. Experimental tests are performed to verify the performance of the controller, and the results prove the high performance of the controller.

LQG/LTR Control of Hydraulic Positioning System with Dead-zone (사역대가 포함된 유압 위치 시스템의 LQG/LTR 제어)

  • Kim, In-Soo;Kim, Yeung-Shik;Kim, Ki-Bum
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.8
    • /
    • pp.729-735
    • /
    • 2012
  • A LQG/LTR(linear quadratic Gaussian/loop transfer recovery) controller with an integrator is designed to control the electro-hydraulic positioning system. Without considering the nonlinearity in the dead-zone, computer simulations are performed and show good performances and tracking abilities with the feedback controller based on the linear system model. However, the performance of the closed loop hydraulic positioning system shows big steady-state error in real system because of the dead-zone. In this paper, the feedback controller with a nonlinear compensator is introduced to overcome the dead-zone phenomenon in hydraulic systems. The inverse dead-zone as a nonlinear compensator is used to cancel out the dead-zone phenomenon. Experimental tests are performed to verify the performance of the controller.

Dynamic Modeling and LQG/LTR Controller Design for the Flexible Structures (유연 구조물에 대한 동역학 모델링 및 LQG/LTR 제어기 설계)

  • 채장수;박태원
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.2
    • /
    • pp.67-73
    • /
    • 2004
  • Some of Spacecraft's structures are flexible so that a certain expected disturbance can easily excite a low frequency vibration on these structures, having very low natural damping. Such vibration will degrade the performance of the system, which should to be kept in a specific shape or attitude against the undesired vibration. In this paper, LQG/LTR controller is developed using an additional dynamic model to increase the performance of the frequency responses at low frequency area. This study presents that the LQG/LTR design was an effective controller for the flexible structure.

Design of the Synchronous generator and SVC controller Using LQG/LTR (LQG/LTR에 의한 동기발전기와 SVC의 제어기 설계)

  • Lee, Dong-Hee;Lee, Byung-Ha
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.227-229
    • /
    • 2000
  • This paper presents a LQG/LTR method for controlling the PSS and SVC effectively. A one-machine Infinite-bus power system is used as an analysis system, where PSS is installed at the synchronous generator and SVC at the generator bus as a parallel compensation device. The simulation results show that the LQG/LTR controller of PSS and SYC improves the power system stability effectively.

  • PDF

Dynamic Modeling and Design LQG/LTR Controller for the Flexible Satellite Structure (인공위성의 유연모드 구조물에 대한 동력학 모델링 및 LQG/LTR 제어기 설계)

  • 오경륜;채장수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.5-5
    • /
    • 2000
  • Some of Spacecraft's structures are flexible so that a certain expected disturbance can easily excite a low frequency vibration on these structures, having very low natural damping. Such vibration will degrade the performance of the system, which should to be kept in a specific shape or attitude against the undesired vibration, In this paper, LQG/LTR controller is developed using an additional dynamic model to increase the performance of the frequency responses at low frequency area,

  • PDF