This paper proposes LQ optimal controller design method based on the modal decomposition. Here, the design problem of linear time-invariant systems is considered by using pencil model. The mathematical model based on matrix pencil is one of the most general representation of the system. By adding some conditions the model can be reduced to traditional system models. In pencil model, the state feedback is considered as an algebraic constraint between the state variable and the control input variable. The algebraic constraint on pencil model is called purely static mode, and is included in infinite mode. Therefore, the information of the constant gain controller is included in the purely static mode of the augmented system which consists of the plant and the control conditions. We pay attention to the coordinate transformation matrix, and LQ optimal controller is derived from the algebraic constraint of the internal variable. The proposed method is applied to the numerical examples, and the results are verified.
This paper presents the system modeling, analysis, and controller design and implementation with a inverted pendulum system in order to test Linear Quadratic control based robust algorithm for inverted pendulum robot. The balancing of an inverted pendulum robot by moving pendulum robot like as 'segway' along a horizontal track is a classic problem in the area of control. This paper will describe two methods to swing a pendulum attached to a cart from an initial downwards position to an upright position and maintain that state. The results of real experiment show that the proposed control system has superior performance for following a reference command at certain initial conditions.
This paper is concerned with the robust control of LQ state feedback regulators with poles in a specified region in the presence of system uncertainty. The robust stability results for the constant and nonlinear time varying perturbations are derived in terms of bounds of the perturbed system matrices and the weighting matrices in the performance index of LQ problem. The theoretical results are applied to the gap control problem of an attractive-type-magnetic levitation system and the effectiveness is proved by the implementation of digital control using 16 bits microcomputer.
Quadratic weighting matrices have an effect on the transition and steady state responses in a LQ tracking problem. They are usually decided on trial and error in order to get a good response. In this paper a method is presented which calculates a steady - state deviation without solving Riccati equation. By using this method, a new procedure for selecting the weighting matrices is proposed when a tolerance on the steady - state deviation is given.
본 논문에서는 스위칭 선형 시스템의 적응 LQ 준최적 제어를 위한 Q-학습법 알고리즘을 제안한다. 제안된 제어 알고리즘은 안정성이 증명된 기존 Q-학습법에 기반하며 스위칭 시스템 모델의 변수를 모르는 상황에서도 준최적 제어가 가능하다. 이 알고리즘을 기반으로 기존에 스위칭 시스템에서 고려하지 않았던 각 시스템의 불확실성 및 최적 적응 제어 문제를 해결하고 컴퓨터 모의실험을 통해 제안한 알고리즘의 성능과 결과를 검증한다.
The levitation system of Maglev is composed with electro-magnet, power supplier, controller and sensor. The complex interactions between above subcomponents define the characteristics of electromagnetic suspension of the vehicle. In this study, to understand the influence of controller on the running performance of Maglev, the new controller based on LQ theory will be designed and be simulated with simplified vehicle model. Then the influence of controller on the characteristics of electromagnetic suspension will be reviewed through comparison with existing control algorithm of our prototype vehicle.
The stability margin of the LQ regulator is investigated in the time domain. it is shown that the same guaranteed gain margin as that of the frequency domain analysis can be obtained with simple assumptions for the continuous time systems. It is also shown that the allowable modelling error bound can be expressed in terms of system matrices and Riccati equation solution. Guaranteed qain. margin and the allowable modelling error bound for the discrete time systems are also obtained by the similar procedures. In this case, through the some examples, the gain margin is shown to be less conservative than the frequency domain analysis result.
Recently, Reinforcement Learning(RL) methods have been used far teaming problems in Partially Observable Markov Decision Process(POMDP) environments. Conventional RL-methods, however, have limited applicability to POMDP To overcome the partial observability, several algorithms were proposed [5], [7]. The aim of this paper is to extend our previous algorithm for POMDP, called Labeling Q-learning(LQ-learning), which reinforces incomplete information of perception with labeling. Namely, in the LQ-learning, the agent percepts the current states by pair of observation and its label, and the agent can distinguish states, which look as same, more exactly. Labeling is carried out by a hash-like function, which we call Labeling Function(LF). Numerous labeling functions can be considered, but in this paper, we will introduce several labeling functions based on only 2 or 3 immediate past sequential observations. We introduce the basic idea of LQ-learning briefly, apply it to maze problems, simple POMDP environments, and show its availability with empirical results, look better than conventional RL algorithms.
International Journal of Fuzzy Logic and Intelligent Systems
/
제3권1호
/
pp.58-65
/
2003
In this paper, a new model, which is a Takagi-Sugeno fuzzy model, for mobile robot is presented. A controller, consisting of two loops the one of which is the inner state feedback loop designed for stability and the outer loop is a PI controller designed for tracking the reference input, is suggested. Because the robot dynamics is nonlinear, it requires the controller to be insensitive to the nonlinear term. To achieve this objective, the model is developed by well known T-S fuzzy model. The design algorithm of inner state-feedback loop is regional pole-placement. In this paper, regions, for which poles of the inner state feedback loop are lie in, are formulated by LMI's. By solving these LMI's, we can obtain the state feedback gains for T-S fuzzy system. And this paper shows that the PI controller is equivalent to the state feedback and the cost function for reference tracking is equivalent to the LQ(linear quadratic) cost. By using these properties, it is also shown in this paper that the PI controller can be obtained by solving the LQ problem.
Recently, Reinforcement Learning (RL) methods in MDP have been extended and applied to the POMDP problems. Currently, hierarchical RL methods are widely studied. However, they have the drawback that the learning time and memories are exhausted only for keeping the hierarchical structure, though they aren´t necessary. On the other hand, our "Labeling Q-learning (LQ-learning) proposed previously, has no hierarchical structure, but adopts a characteristic internal memory mechanism. Namely, LQ-1earning agent percepts the state by pair of observation and its label, and the agent can distinguish states, which look as same, but obviously different, more exactly. So to speak, at each step t, we define a new type of perception of its environment ~ot = (ot, $\theta$t), where of is conventional observation, and $\theta$t is the label attached to the observation. Then the conventional ...
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.