Labeling Q-Learning for Maze Problem:s with Partially Observable States

Hae Yeon Lee*, Hiroyuki Kamaya**, Kenich Abe*

*Dept. Electrical and Communication Engineering, Graduate School of Engineering, Tohoku Univ.
Aoba05, 980-8579, Sendai, Japan
(Tel : +81-22-217-7075 ; Fax : +81-22-263-9290 ;
E-mail : yeon@abe.ecei.tohoku.ac.jp, abe@abe.ecei.tohoku.ac.jp)

**Dept. Electrical Engineering, Hachinohe National College of Technology
Tamonoki, 139-1192, Hachinohe, Japan
(Tel : +81-178-27-7283; Fax : +81-178-27-9379 ; Tel ; E-mail : kamaya-e@hachinohe-c.ac.jp)

Abstract
Recently, Reinforcement Learning(RL) methods have been used
for leaming problems in Partially Observable Markov Decision
Process(POMDP) environments. Conventional RL-methods,
however, have limited applicability to POMDP. To overcome the
partial observability, several algorithms were proposed [5], [7].

The aim of this paper is to extend our previous algorithm for
POMDP, called Labeling Q-learning(LQ-leaming), which
reinforces incomplete information of perception with labeling,
Namely, in the LQ-learning, the agent percepts the current states
by pair of observation and its label, and the agent can distinguish
states, which look as same, more exactly. Labeling is carried out
by a hash-like function, which we call Labeling Function(LF).
Numerous labeling functions can be considered, but in this paper,
we will introduce several labeling functions based on only 2 or 3
immediate past sequential observations.

We introduce the basic idea of LQ-leaming briefly, apply it to
maze problems, simple POMDP environments, and show its
availability with empirical results, look better than conventional
RL algorithms.

1. Introduction

Sequential decision problems in which an agent’s observations
provide it with the complete state of its environment can be
formulated as Markov Decision Processes(MDP), for which a
number of successful planning and RL methods have been
developed. However, in many areas, e.g., mobile robotics,
multi-agent or distributed control environments, etc., the agent’s
perception at best gives it partial information about the state of
environment. Such agent-environment interactions suffer from
hidden state or perceptual aliasing and can be formulated as
POMDP. Therefore, finding efficient RL methods to solve
interesting sub-classes of POMDP is of great practical interest to
Al and engineering.

Recent researches on POMDP have concentrated on
overcoming partial observability by using memory to estimate
state and on developing planning and learning methods that work
well with the agent’s knowledge of state. In part, this emphasis
on state estimation has come about because it has been widely
observed and noted that the presence of partial obseravability
renders popular and successful RL methods for MDP, such as
Q-learning and Sarsa, useless on POMDP. Next, we introduce
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the basic algorithm of RL below.

Reinforcement Learning

In the widely used RL approaches, such as Q-learning by
Watkins[16], TD( 4 ) by Sutton[14], and Sarsa( 1 ) by Dayan[3],
the learning agent uses experience to learn estimation of optimal
Q-value functions that map state-action pairs, (s,a) by receiving a
scalar reinforcement signal, called reward, as a feedback
performance from its environment, and changes its parameters so
as to act optimally in the environment. In another words, agent
learns the optimal policy that maximizes expected discounted
rewards.

The environment is defined by a finite set of state S, and the
agent has a finite set of actions 4. In the RL process, the agent
time-discretely observes its environment’s state s €5, and at each
time step, determines it’s action a €4 based on the observation
and receive a scalar reward r. Then, the object of leaming is to
construct an optimal action policy that maximizes the expected
discounted reward ﬂ27°=07”1 ] where r, is the reward at
time step f and 0<y<1
immediate reward more available than reward more distant in

is discount factor that makes

time.

The action selection at each step is based on Q-values,
Q(s,a) , about the relative goodness of actions. The Q-value,
Q(s,a) , is the total discounted reward that the agent receives if
it starts at a state s, performs an action g, and behaves optimally
thereafter. In the RL approach, the Q-values are estimated based
on the Temporal Difference(TD) method, see Sutton[13].

A standard form of the algorithms of estimating the Q-values
with heuristic traces is expressed as follows;

0(s,a) & Q(s,a) + [, + ¥0(5,01,0,) - O(s,,a,) (s, 0) )
where o is learning rate, and vy is discount factor, and
ds,a) is eligibility traces(Loch and Singh, [8]).

e(s,,a) — v A e(s, a)+1
@)
e(s,a) —v A e(s,a) for s#s,0ra#a,
This eligibility traces emphasize more recent and frequent
events more strongly. But we apply a modification form of the
eligibility traces, called the replacing traces, see Singh and



