• 제목/요약/키워드: LET-R

검색결과 851건 처리시간 0.021초

ON CLEAN AND NIL CLEAN ELEMENTS IN SKEW T.U.P. MONOID RINGS

  • Hashemi, Ebrahim;Yazdanfar, Marzieh
    • 대한수학회보
    • /
    • 제56권1호
    • /
    • pp.57-71
    • /
    • 2019
  • Let R be an associative ring with identity, M a t.u.p. monoid with only one unit and ${\omega}:M{\rightarrow}End(R)$ a monoid homomorphism. Let R be a reversible, M-compatible ring and ${\alpha}=a_1g_1+{\cdots}+a_ng_n$ a non-zero element in skew monoid ring $R{\ast}M$. It is proved that if there exists a non-zero element ${\beta}=b_1h_1+{\cdots}+b_mh_m$ in $R{\ast}M$ with ${\alpha}{\beta}=c$ is a constant, then there exist $1{\leq}i_0{\leq}n$, $1{\leq}j_0{\leq}m$ such that $g_{i_0}=e=h_{j_0}$ and $a_{i_0}b_{j_0}=c$ and there exist elements a, $0{\neq}r$ in R with ${\alpha}r=ca$. As a consequence, it is proved that ${\alpha}{\in}R*M$ is unit if and only if there exists $1{\leq}i_0{\leq}n$ such that $g_{i_0}=e$, $a_{i_0}$ is unit and aj is nilpotent for each $j{\neq}i_0$, where R is a reversible or right duo ring. Furthermore, we determine the relation between clean and nil clean elements of R and those elements in skew monoid ring $R{\ast}M$, where R is a reversible or right duo ring.

ANALOGUE OF WIENER INTEGRAL IN THE SPACE OF SEQUENCES OF REAL NUMBERS

  • Ryu, Kun Sik
    • 충청수학회지
    • /
    • 제25권1호
    • /
    • pp.65-72
    • /
    • 2012
  • Let T > 0 be given. Let $(C[0,T],m_{\varphi})$ be the analogue of Wiener measure space, associated with the Borel proba-bility measure ${\varphi}$ on ${\mathbb{R}}$, let $(L_{2}[0,T],\tilde{\omega})$ be the centered Gaussian measure space with the correlation operator $(-\frac{d^{2}}{dx^{2}})^{-1}$ and ${\el}_2,\;\tilde{m}$ be the abstract Wiener measure space. Let U be the space of all sequence $<c_{n}>$ in ${\el}_{2}$ such that the limit $lim_{{m}{\rightarrow}\infty}\;\frac{1}{m+1}\;\sum{^{m}}{_{n=0}}\;\sum_{k=0}^{n}\;c_{k}\;cos\;\frac{k{\pi}t}{T}$ converges uniformly on [0,T] and give a set function m such that for any Borel subset G of $\el_2$, $m(\mathcal{U}\cap\;P_{0}^{-1}\;o\;P_{0}(G))\;=\tilde{m}(P_{0}^{-1}\;o\;P_{0}(G))$. The goal of this note is to study the relationship among the measures $m_{\varphi},\;\tilde{\omega},\;\tilde{m}$ and $m$.

SIMPLE VALUATION IDEALS OF ORDER TWO IN 2-DIMENSIONAL REGULAR LOCAL RINGS

  • Hong, Joo-Youn;Lee, Hei-Sook;Noh, Sun-Sook
    • 대한수학회논문집
    • /
    • 제20권3호
    • /
    • pp.427-436
    • /
    • 2005
  • Let (R, m) be a 2-dimensional regular local ring with algebraically closed residue field R/m. Let K be the quotient field of R and v be a prime divisor of R, i.e., a valuation of K which is birationally dominating R and residually transcendental over R. Zariski showed that there are finitely many simple v-ideals $m=P_0\;{\supset}\;P_1\;{\supset}\;{\cdotS}\;{\supset}\;P_t=P$ and all the other v-ideals are uniquely factored into a product of those simple ones. It then was also shown by Lipman that the predecessor of the smallest simple v-ideal P is either simple (P is free) or the product of two simple v-ideals (P is satellite), that the sequence of v-ideals between the maximal ideal and the smallest simple v-ideal P is saturated, and that the v-value of the maximal ideal is the m-adic order of P. Let m = (x, y) and denote the v-value difference |v(x) - v(y)| by $n_v$. In this paper, if the m-adic order of P is 2, we show that $O(P_i)\;=\;1\;for\;1\;{\leq}\;i\; {\leq}\;{\lceil}\;{\frac{b+1}{2}}{\rceil}\;and\;O(P_i)\;=2\;for\;{\lceil}\;\frac{b+3}{2}\rceil\;{\leq}\;i\;\leq\;t,\;where\;b=n_v$. We also show that $n_w\;=\;n_v$ when w is the prime divisor associated to a simple v-ideal $Q\;{\supset}\;P$ of order 2 and that w(R) = v(R) as well.

RANDOMLY ORTHOGONAL FACTORIZATIONS OF (0,mf - (m - 1)r)-GRAPHS

  • Zhou, Sizhong;Zong, Minggang
    • 대한수학회지
    • /
    • 제45권6호
    • /
    • pp.1613-1622
    • /
    • 2008
  • Let G be a graph with vertex set V(G) and edge set E(G), and let g, f be two nonnegative integer-valued functions defined on V(G) such that $g(x)\;{\leq}\;f(x)$ for every vertex x of V(G). We use $d_G(x)$ to denote the degree of a vertex x of G. A (g, f)-factor of G is a spanning subgraph F of G such that $g(x)\;{\leq}\;d_F(x)\;{\leq}\;f(x)$ for every vertex x of V(F). In particular, G is called a (g, f)-graph if G itself is a (g, f)-factor. A (g, f)-factorization of G is a partition of E(G) into edge-disjoint (g, f)-factors. Let F = {$F_1$, $F_2$, ..., $F_m$} be a factorization of G and H be a subgraph of G with mr edges. If $F_i$, $1\;{\leq}\;i\;{\leq}\;m$, has exactly r edges in common with H, we say that F is r-orthogonal to H. If for any partition {$A_1$, $A_2$, ..., $A_m$} of E(H) with $|A_i|=r$ there is a (g, f)-factorization F = {$F_1$, $F_2$, ..., $F_m$} of G such that $A_i\;{\subseteq}E(F_i)$, $1\;{\leq}\;i\;{\leq}\;m$, then we say that G has (g, f)-factorizations randomly r-orthogonal to H. In this paper it is proved that every (0, mf - (m - 1)r)-graph has (0, f)-factorizations randomly r-orthogonal to any given subgraph with mr edges if $f(x)\;{\geq}\;3r\;-\;1$ for any $x\;{\in}\;V(G)$.

SINGULAR INNER FUNCTIONS OF $L^{1}-TYPE$

  • Izuchi, Keiji;Niwa, Norio
    • 대한수학회지
    • /
    • 제36권4호
    • /
    • pp.787-811
    • /
    • 1999
  • Let M be the maximal ideal space of the Banach algebra $H^{\infty}$ of bounded analytic functions on the open unit disc $\triangle$. For a positive singular measure ${\mu}\;on\;{\partial\triangle},\;let\;{L_{+}}^1(\mu)$ be the set of measures v with $0\;{\leq}\;{\nu}\;{\ll}\;{\mu}\;and\;{{\psi}_{\nu}}$ the associated singular inner functions. Let $R(\mu)\;and\;R_0(\mu)$ be the union sets of $\{$\mid$\psiv$\mid$\;<\;1\}\;and\;\{$\mid${\psi}_{\nu}$\mid$\;<\;0\}\;in\;M\;{\setminus}\;{\triangle},\;{\nu}\;\in\;{L_{+}}^1(\mu)$, respectively. It is proved that if $S(\mu)\;=\;{\partial\triangle}$, where $S(\mu)$ is the closed support set of $\mu$, then $R(\mu)\;=\;R0(\mu)\;=\;M{\setminus}({\triangle}\;{\cup}\;M(L^{\infty}(\partial\triangle)))$ is generated by $H^{\infty}\;and\;\overline{\psi_{\nu}},\;{\nu}\;{\in}\;{L_1}^{+}(\mu)$. It is proved that %d{\theta}(S(\mu))\;=\;0$ if and only if there exists as Blaschke product b with zeros $\{Zn\}_n$ such that $R(\mu)\;{\subset}\;{$\mid$b$\mid$\;<\;1}\;and\;S(\mu)$ coincides with the set of cluster points of $\{Zn\}_n$. While, we proved that $\mu$ is a sum of finitely many point measure such that $R(\mu)\;{\subset}\;\{$\mid${\psi}_{\lambda}$\mid$\;<\;1}\;and\;S(\lambda)\;=\;S(\mu)$. Also it is studied conditions on \mu for which $R(\mu)\;=\;R0(\mu)$.

  • PDF

THE TOTAL GRAPH OF A COMMUTATIVE RING WITH RESPECT TO PROPER IDEALS

  • Abbasi, Ahmad;Habibi, Shokoofe
    • 대한수학회지
    • /
    • 제49권1호
    • /
    • pp.85-98
    • /
    • 2012
  • Let R be a commutative ring and I its proper ideal, let S(I) be the set of all elements of R that are not prime to I. Here we introduce and study the total graph of a commutative ring R with respect to proper ideal I, denoted by T(${\Gamma}_I(R)$). It is the (undirected) graph with all elements of R as vertices, and for distinct x, y ${\in}$ R, the vertices x and y are adjacent if and only if x + y ${\in}$ S(I). The total graph of a commutative ring, that denoted by T(${\Gamma}(R)$), is the graph where the vertices are all elements of R and where there is an undirected edge between two distinct vertices x and y if and only if x + y ${\in}$ Z(R) which is due to Anderson and Badawi [2]. In the case I = {0}, $T({\Gamma}_I(R))=T({\Gamma}(R))$; this is an important result on the definition.

ADDITIVE MAPS OF SEMIPRIME RINGS SATISFYING AN ENGEL CONDITION

  • Lee, Tsiu-Kwen;Li, Yu;Tang, Gaohua
    • 대한수학회보
    • /
    • 제58권3호
    • /
    • pp.659-668
    • /
    • 2021
  • Let R be a semiprime ring with maximal right ring of quotients Qmr(R), and let n1, n2, …, nk be k fixed positive integers. Suppose that R is (n1+n2+⋯+nk)!-torsion free, and that f : 𝜌 → Qmr(R) is an additive map, where 𝜌 is a nonzero right ideal of R. It is proved that if [[…[f(x), xn1], …], xnk] = 0 for all x ∈ 𝜌, then [f(x), x] = 0 for all x ∈ 𝜌. This gives the result of Beidar et al. [2] for semiprime rings. Moreover, it is also proved that if R is p-torsion, where p is a prime integer with p = Σki=1 ni and if f : R → Qmr(R) is an additive map satisfying [[…[f(x), xn1], …], xnk] = 0 for all x ∈ R, then [f(x), x] = 0 for all x ∈ R.

ON THE 2-ABSORBING SUBMODULES AND ZERO-DIVISOR GRAPH OF EQUIVALENCE CLASSES OF ZERO DIVISORS

  • Shiroyeh Payrovi;Yasaman Sadatrasul
    • 대한수학회논문집
    • /
    • 제38권1호
    • /
    • pp.39-46
    • /
    • 2023
  • Let R be a commutative ring, M be a Noetherian R-module, and N a 2-absorbing submodule of M such that r(N :R M) = 𝖕 is a prime ideal of R. The main result of the paper states that if N = Q1 ∩ ⋯ ∩ Qn with r(Qi :R M) = 𝖕i, for i = 1, . . . , n, is a minimal primary decomposition of N, then the following statements are true. (i) 𝖕 = 𝖕k for some 1 ≤ k ≤ n. (ii) For each j = 1, . . . , n there exists mj ∈ M such that 𝖕j = (N :R mj). (iii) For each i, j = 1, . . . , n either 𝖕i ⊆ 𝖕j or 𝖕j ⊆ 𝖕i. Let ΓE(M) denote the zero-divisor graph of equivalence classes of zero divisors of M. It is shown that {Q1∩ ⋯ ∩Qn-1, Q1∩ ⋯ ∩Qn-2, . . . , Q1} is an independent subset of V (ΓE(M)), whenever the zero submodule of M is a 2-absorbing submodule and Q1 ∩ ⋯ ∩ Qn = 0 is its minimal primary decomposition. Furthermore, it is proved that ΓE(M)[(0 :R M)], the induced subgraph of ΓE(M) by (0 :R M), is complete.

APPROXIMATE CONVEXITY WITH RESPECT TO INTEGRAL ARITHMETIC MEAN

  • Zoldak, Marek
    • 대한수학회보
    • /
    • 제51권6호
    • /
    • pp.1829-1839
    • /
    • 2014
  • Let (${\Omega}$, $\mathcal{S}$, ${\mu}$) be a probabilistic measure space, ${\varepsilon}{\in}\mathbb{R}$, ${\delta}{\geq}0$, p > 0 be given numbers and let $P{\subset}\mathbb{R}$ be an open interval. We consider a class of functions $f:P{\rightarrow}\mathbb{R}$, satisfying the inequality $$f(EX){\leq}E(f{\circ}X)+{\varepsilon}E({\mid}X-EX{\mid}^p)+{\delta}$$ for each $\mathcal{S}$-measurable simple function $X:{\Omega}{\rightarrow}P$. We show that if additionally the set of values of ${\mu}$ is equal to [0, 1] then $f:P{\rightarrow}\mathbb{R}$ satisfies the above condition if and only if $$f(tx+(1-t)y){\leq}tf(x)+(1-t)f(y)+{\varepsilon}[(1-t)^pt+t^p(1-t)]{\mid}x-y{\mid}^p+{\delta}$$ for $x,y{\in}P$, $t{\in}[0,1]$. We also prove some basic properties of such functions, e.g. the existence of subdifferentials, Hermite-Hadamard inequality.

A NOTE ON PARTIAL SIGN-SOLVABILITY

  • Hwang, Suk-Geun;Park, Jin-Woo
    • 대한수학회보
    • /
    • 제43권3호
    • /
    • pp.471-478
    • /
    • 2006
  • In this paper we prove that if AX=b is a partial sign-solvable linear system with A being sign non-singular matrix and if ${\alpha}=\{j:\;x_j\;is\;sign-determined\;by\; Ax=b\}, then $A_{\alpha}X_{\alpha}=b_{\alpha}$ is a sign-solvable linear system, where $A_{\alpha}$ denotes the submatrix of A occupying rows and columns in o and xo and be are subvectors of x and b whose components lie in ${\alpha}$. For a sign non-singular matrix A, let $A_l,\;...,A_{\kappa}$ be the fully indecomposable components of A and let ${\alpha}_i$ denote the set of row numbers of $A_r,\;r=1,\;...,\;k$. We also show that if $A_x=b$ is a partial sign-solvable linear system, then, for $r=1,\;...,\;k$, if one of the components of xor is a fixed zero solution of Ax=b, then so are all the components of x_{{\alpha}r}$.