• Title/Summary/Keyword: LEE-stability conditions

Search Result 1,312, Processing Time 0.036 seconds

Underwater Stability of Surface Chemically Modified Superhydrophobic W18O49 Nanowire Arrays

  • Lee, Junghan;Yong, Kijung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.601-601
    • /
    • 2013
  • Superhydrophobic W18O49 nanowire (NW) arrays were synthesizedusing a thermal evaporation and surface chemistry modification methods by self-assembled monolayer (SAM). As-prepared non-wetting W18O49 NWs surface shows water contact angle of $163.2^{\circ}$ and has reliable stability in underwater conditions. Hence the superhydrophobic W18O49 NWs surface exhibits silvery surface by total reflection of water layer and air interlayer. The stability analysus of underwater superhydrophobicity of W18O49 NWs arrays was conducted by changing hydrostatic pressure and surface energy of W18O49 NWs arrays. The stability of superhydrophobicity in underwater conditions decreased exponentially as hydrostatic pressure applied to the substrates increased3. In addition, as surface energy decreased, the underwater stability of superhydrophobic surface increased sharply. Specifically, sueprhydrophobic stability increased exponentially as surface energy of W18O49 NWs arrays was decreased. Based on these results, the models for explaining tendencies of superhydrophobic stability underwater resulting from hydrostatic pressure and surface energy were designed. The combination of fugacity and Laplace pressure explained this exponential decay of stability according to hydrostatic pressure and surface energy. This study on fabrication and modeling of underwater stability of superhydrophobic W18O49 NW arrays will help in designing highly stable superhydrophobic surfaces and broadening fields of superhydrophobic applications even submerged underwater.

  • PDF

Robust stability analysis of uncertain linear systems with input saturation using piecewise Lyapunov functions (불연속 리아푸노프 함수를 이용한 입력제한이 있는 불확실 선형 시스템의 안정성 해석)

  • Lee, Sang-Moon;Won, Sang-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.131-134
    • /
    • 2003
  • In this paper, we consider the problem of finding the stability region in state space for uncertain linear systems with input saturation. For stability analysis, two Lyapunov functions are chosen. One is for the lineal region and the other is for the saturated legion. Piecewise Lyapunov functions are obtained by solving successive linear matrix inequalites(LMIs) relaxations. A sufficient condition for robust stability is derived in the form of stability region of initial conditions. A numerical example shows the effectiveness of the proposed method.

  • PDF

Proposal and Validation of a New Flame Stability Diagram to Gas Estimate Interchangeability (가스호환성 판정에 편리한 새로운 화염안정영역의 도시법의 제안 및 유용성 검토)

  • Lee, Chang-Eon;Kim, Jong-Min;Hwang, Cheol-Hong;Kim, Jong-Hyun
    • Journal of the Korean Society of Combustion
    • /
    • v.13 no.3
    • /
    • pp.1-8
    • /
    • 2008
  • A flame stability diagram in a partially premixed flame is typically expressed using the axis coordinates of heat input rate and equivalence ratio. These diagrams are inadequate for identifying changes in combustion conditions and flame stability when a reference fuel is substituted with other fuels under identical operating conditions. This study proposes a new type of diagram and validates it experimentally. In this new diagram, the axis coordinates are air flow rate and Wobbe fuel flow rate, defined as the fuel flow rate multiplied by the square root of the relative density. The diagram was validated in trials using various fuels, including $CH_4$, $C_{3}H_{8}$, and LFG-$C_{3}H_{8}$ mixed fuels, in a domestic gas-range and an gas interchangeability test burner. The results of these trials show that the new diagram can provide information useful for assessing gas interchangeability of combustion conditions and flame stability when one fuel is substituted with another under identical operating conditions.

  • PDF

Heating Compression of Italian Poplar (Populus euramericana) Wood - Dimensional Stability Against Moisture -

  • Jung, In-Suk;Lee, Weon-Hee
    • Journal of the Korean Wood Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.91-96
    • /
    • 2002
  • This study was carried out to estimate the property of dimensional stability of heat compression of italian poplar wood with low density. Firstly, two levels of pressure conditions were applied using the closed and open-press system. The thermal treatment temperatures were 180℃ and 200℃, respectively. Water absorption tests were conducted in water bath at 25℃ and 100℃ for 35 hours and 1 hour, respectively. The compression rates of wood were 47 percent, 60 percent, and 73 percent, respectively. From these tests, it was found that the dimensional stability of the closed-press system was superior to that of the open-press system. Furthermore, the dimensional stability of compressed wood in the closed-press system was better at 200℃ than 180℃. In compression rate, dimensional stability of 73 percent compression rate was the best result. Considering these results, the best conditions for the dimensional stability of compressed wood were those of the closed-compressing system at high temperatures above 200℃ and larger compression rate. Therefore, it was concluded that the dimensional stability of wood is improved at higher temperature and larger deformation.

An Experimental Study on IMO 2nd Generation Stability Assessment in Dead Ship Condition of 13K Chemical Tanker (13K Chemical Tanker의 기관 제어 불능상태 IMO 2세대 안정성 평가에 관한 실험적 연구)

  • Lee, Sang-Beom;Moon, Byung-Young
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.2
    • /
    • pp.89-95
    • /
    • 2022
  • The stability of the existing ships has been evaluated through numerical calculations in the steady-state, but recently the IMO proposed a new stability assessment criteria that the stability is evaluated in the state in which environmental loads from such as waves and wind act like the loads under actual ship operating conditions. In this study, IMO 2nd generation stability assessment method and procedure were summarized for the dead ship condition, and Direct Stability Assessment (DSA) was performed on 13K chemical tanker through basin model test. The model test is performed in the ocean engineering basin to implement wave and wind loads, and environmental conditions for waves were set height and period of the incident wave, considering the regular wave and wind generation range reproducible in the ocean engineering basin. In addition, to consider the effect of wind speed, the Beaufort Scale for wind speed was applied in the model test.

Hydrolytic Stability of Cured Urea-Melamine-Formaldehyde Resins Depending on Hydrolysis Conditions and Hardener Types

  • Park, Byung-Dae;Lee, Sang-Min
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.5
    • /
    • pp.672-681
    • /
    • 2015
  • As a part of abating the formaldehyde emission of amino resin-bonded wood-based composite panels, this study was conducted to investigate hydrolytic stability of urea-melamine-formaldehyde (UMF) resin depending on various hydrolysis conditions and hardener types. Commercial UMF resin was cured and ground into a powdered form, and then hydrolyzed with hydrochloric acid. After the acid hydrolysis, the concentration of liberated formaldehyde in the hydrolyzed solution and mass loss of the cured UMF resins were determined to compare their hydrolytic stability. The hydrolysis of cured UMF resin increased with an increase in the acid concentration, time, and temperature and with a decrease in the smaller particle size. An optimum hydrolysis condition for the cured UMF resins was determined as $50^{\circ}C$, 90 minutes, 1.0 M hydrochloric acid and $250{\mu}m$ particle size. Hydrolysis of the UMF resin cured with different hardener types showed different degrees of the hydrolytic stability of cured UMF resins with a descending order of aluminum sulfate, ammonium chloride, and ammonium sulfate. The hydrolytic stability also decreased as the addition level of ammonium chloride increased. These results indicated that hardener types and level also had an impact on the hydrolytic stability of cured UMF resins.

ASYMPTOTIC STABILITY IN GENERAL DYNAMICAL SYSTEMS

  • Lim, Young-Il;Lee, Kyung-Bok;Park, Jong-Soh
    • Bulletin of the Korean Mathematical Society
    • /
    • v.41 no.4
    • /
    • pp.665-676
    • /
    • 2004
  • In this paper we characterize asymptotic stability via Lyapunov function in general dynamical systems on c-first countable space. We give a family of examples which have first countable but not c-first countable, also c-first countable and locally compact space but not metric space. We obtain several necessary and sufficient conditions for a compact subset M of the phase space X to be asymptotic stability.

Analysis of a Networked Control System using the Discrete-Time MJLS(Markov Jump Linear System) (이산 MJLS(Markov Jump Linear System)를 이용한 네트워크 제어시스템 해석)

  • Jung, Joon-Hong;Lee, Jae-Ho;Park, Tae-Dong;Park, Ki-Heon
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1693-1694
    • /
    • 2008
  • This paper deals with the stability analysis method of a networked control system using the discrete-time MJLS(Markov Jump Linear System). The necessary and sufficient conditions for the mean stability and mean square stability of a networked control system having data uncertainties are proposed. The numerical example is presented to illustrate the usefulness of proposed stability conditions.

  • PDF

Robust Stability of Uncertain Linear Systems with Multiple Time-delayed (다중 시간지연을 갖는 불확정성 선형 시스템의 강인 안정성)

  • Lee, Hee-Song;Kim, Jin-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.449-451
    • /
    • 1998
  • In this paper, we consider the problem of the robust stability of uncertain linear systems with multiple time-varying delays. The considered uncertainties are both the unstructured uncertainty which is only known its norm bound and the structured uncertainty satisfying the matching conditions, respectively. We present conditions that guarantee the robust stability of systems based on Lyapunov stability theorem and $H_{\infty}$ theory in the time domain. Finally, we show the usefulness of our results by numerical examples.

  • PDF