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Robust stability analysis of uncertain linear systems
with input saturation using piecewise Lyapunov functions
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Abstract © In this paper, we consider the problem of finding the stability region in state space for uncertain
linear systems with input saturation. For stability analysis, two Lyapunov functions are chosen. One is for the
linear region and the other is for the saturated region. Piecewise Lyapunov functions are obtained by solving
successive linear matrix inequalites(LMIs) relaxations. A sufficient condition for robust stability is derived in
the form of stability region of initial conditions. A numerical example shows the effectiveness of the proposed

method.
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1 . Introduction
Saturation nonlinearities are shown in virtually all
physical systems even though the degree of

importance may vary. Input saturation often causes

the stability problem or aggravation of the
performance of the control systems.

Therefore, the stability analysis for the linear
system subject to input saturation has been studied
by many researchers in past decades [1234]. In
general, global asymptotic stability of the linear
system with input saturation cannot be achieved by
linear feedback control laws. In recent works, the
notion of semi-global stability of linear system with
input saturation was introduced by Sussman and
Yang (1991)[6].

Henricn and Tarbourich (1999){2] considered the
problem of finding the stability region for an
uncertain linear system with input saturation using
LMI based computational formulas. They formulated
the saturation nonlinearity using a saturation index
and modelled the actuator saturation as polytopic
system uncertainties under given state feedback.
They changed the stability problem of the system
into a BMI problem and relaxed the BMI problem to
dual LMI problems. So they found the greatest set
of initial condition under their sufficient condition. In

this paper, we propose a new method to develop a
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less conservative sufficient condition for the stability
of uncertain linear system with input saturation. It
is based on piecewise quadratic Lyapunov functions.
We describe the state feedback control system with
saturation as a switching system where switching
occurs between linear region and saturated region.
Then we choose two different Lyapunov functions
at distinct convex areas according to the given
saturation index and uncertainties.

We use a dual LMI relaxation method to find the
greatest set of stability region under our sufficient
condition. Finally, we demonstrate the effectiveness
of the proposed approach using a numerical example.

It. Problem statement and preliminaries
Consider the uncertain linear system with input
saturation given by:

(1) ={A+AA)s(t)+ (B+ AB)sat(u(t)), (D

where z € R" is the state vector, u€ R™ is the
control input vector.
We choose the state feedback control law as

u(t) = Kz (t). @)



The component of input vector u(t) is formulated

w; if Ka> w;
w=sat[Kz] =3 Kx if | Kiz| <w 3)
—a; if Kg<—uy

where %; is a given positive scalar and X is the ith
row of matrix K.
The parameter uncertainties considered here are

assumed to be norm bounded and of the form
[AA AB]|=DF(i)[E; E], 4)

where D, E,and E, are known constant real

matrices of appropriate dimensions and
F(t) € R**° is an unknown matrix function
satisfies FT($)F(t)< 1, (5)
Then the system (1) can be rewritten as

z(t) = Az (t)+ BGFz(t), )

where 4 = A+AA, B=B+AB,Gisa

diagonal matrix and whose diagonal element is
w/Kx if Kz>w,

g{z) =1{1 if |Kz|swy, (7)
—w/Kz if Kzx<—w,

In order to formulate the linear region and saturated

region, define

S{F,w)={z€ R",—w<K sw;i=1,...,m}8)

and a given positive scalar ¢, we define the

symmetric polyhedron

S,(F,w)={ze R ~wy, <K, <wy,, i=1,..,m},

9)
a contractively invariant set
E(P,p)={ze R":2"Pz<p), (10)

where P € R"™™" is a positive definite matrix.

The following lemma will be used to find sufficient
condition for the stability of the system (6).

Lemma 1.[4] Given an ellipsoid E(P, p), if

there exists an H € R™™ " such that

(A+ BM (v, F H) ™+ P(A+BM (v, FH))< 0
(11)

where M(v,F,H):{

U + (1 ~ v P )
for all ve V and E(P,p) C L(H), ie, thz| <1
for all z€ E(P,p),i € [1,m], then E(P,p) is a

uh +(1 "‘vlh-l) }
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contractively invariant set.

Hi. Stability analysis using Piecewise Lyapunov
Functions

In this section, we investigate the stability of
uncertain linear system with input saturation. We
change the stability problem of the uncertain linear
system with input saturation into that of linear
switching systems. Figure 1 describes the switching
mechanism of the system whose saturation is
switched between a linear region and a saturated
region. In figure 1, the single input system is
illustrated for simplicity. Therefore, the system ({6)
should be expressed as a switching system with m
switching.

For the stability of switching linear systems, the
switching

stability for all sequences  among

asymptotically  stable  4.-matrices should be
guaranteed. The sufficient condition is derived from
the existence of P=pPT>0
AIP+ P4, <@, for i=1,.m.

In this paper, we will propose piecewise Lyapunov

satisfying

functions for the stability of the uncertain linear
system with input saturation.
Let £2, denote a region where one searches for a

Pq in the quadratic Lyapunov-like functions

V,=2z"Pz that satisfies the stability condition
V,(e) =[5 V,(5)da =" (ATP,+ P,AT)a< 0.

(12)

Additionally, the LMI problem formulation requires

switching condition which is uses Lyapunov-like
functions V., then

V.(z) < V,(z). (13)

By using the so-called S-procedure, we provide the
following theorem.

Theorem 1. Given a matrix G, The system (i) is
locally quadratically stable in Lyapunov level set
E(P,,p)U E(P,,p) if there exist an P,= PT> 0,

P,=PF> 0 and A, > 0,X; > 0 such that

(A+BF)TP,+ P,(A+BF) + ) (P,— P,) <0,
E(P,,p) C L(F)

(A+ BGF)"P,+ P, (A+ BGF)+ \(P,— P,) < 0,



E(Py,p) c L(GF) (14
Proof. Consider the following Lyapunov function
candidate

T .

_jz' Pz if ze S(F,w)
40 _{ 2"Px if e S (Fw) (15)
For a initial state z(0), the state is switched from a
saturated region to linear region and vice versa. To
verify the stability of the system (1), we only need
to check that
aV(z(2))/dt < 0. (16)
Note that the derivative is given by
©(A+BF)"P, + P,(A+ BF))z

when z"Px=z"P g,
« (A+BGF)"P,+P,(A + BGF))z
when zTPz>zPyz.
a7n
From (17), the condition for robust stability of (1) is

dV (z(t)) /dt =

obtained by using an S-procedure. n

At this point, we apply the lemma 1 to the
piecewise Lyapunov function, then the condition can
be stated as follows.

Theorem 2. Given an ellipsoid Ep(P;,p) and

Ey(P,,p), if there exist an A\ A\, and He R™*"

such that

(A4 BGF)"™P,+P,(A+ BGF)+ A, (P,~ P,) < 0,

E(P,,p) < L(GF)

(A+BH)"P,+ P,(A+ BH) + )\, (P,— P,) <0,
E(Py,p) < L(H) 18

and | Hz| <w;

then Ep(P,p)UEy(Pyp) is a

invariant set and hence inside the domain of

contractive

attraction.

Proof: The theorem 1 is easily extended by
introducing the saturation level matrix G and an
auxiliary matrix H.

For the region S,(F,w), let

Vi(t) =z 7Pz (19)
We need to show that

Vi(z)=22"P,(A+ BGFz) <0 z e Epp,p) 0%

(20)
Here we have
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Vi(e) =22"ATPa+ 3 22 Phgfz<0. (2D

i=1
For each term 2z"P bgfz ,
If |gfx| =w, then

2z7P bgfz<2z"Pbhx

where | hx| <w, forall z€ E(P,p).

For the region Sy(F,w) = {z| |hz|<w,), define
V,(t) =z Py. (22)

It follows that
Vy(z) =227 (AT+ BH) Pz < 0, foralls € Ey (P, p).
(23)

For switching, the stability of the system is
guaranteed using a S-procedure. [ ]

With all the level sets satisfying the condition of
Theorem 2, we may choose the ‘'largest” one to
obtain the less conservative region of attraction.

In [3], a sufficient condition for the system (1) to
be robustly stable is introduced using a common
quadratic Lyapunov function with the following LMI.

[(A+ BGK)'P4+P(A+ BGK) * *)
| D’P ~1 *<0.29
i E + E,GK 0 —1

The constraint E(P,,p) € L(H) and | Hz| = u; is
equivalent to

min (£ Pyz: hy=w,l=p, i=1,2,...,m. (25)
By using the Lagrange multiplier, we obtain the
following equivalent condition

phP 'RT<1, i=1,2,..., m. (26)
By pre- and post-multiplying

Qi= P/, i=1,2 on the both sides of (18) and

using the well known inequality

X7y + YTXSeXTX+%YTY, for any €> 0.

(27)
We obtain the following theorem from theorem 2
using the above matrix inequality.
Given an

Theorem 3. Ai>0,0>0,G,

uncertain saturated system (1) is locally

quadratically stable in the Lyapunov level set
Eo(P,p)UEy(Py,p) if there exist an



€>0, Ze R™", >0 and @, >0 such
that

@, * * o
eDT —el * *
(B+EK)Q 0 —el * | <0, (28
1l
Q 0 0 -3
&, * *
eDT —] ¥ * \
EQ+EZ 0 —c * <o, ()
@ 0 0 -30
2 2
Ppw; ’)’z‘Kin[ [ pwi v.2Z]
>0, >0, (30,3
vQkI @ 2% |127 @ )

P = Q(A+BK) +(A+ BK)Q +),Q,
By = QAT BT+ AQy+ BZ+ M@,
Note that the matrix inequalities (28)-(31) is
BMIs. Since the BMIs become linear when one
decision variable is fixed, we used it for
schemes based on LMI relaxations[3]. The
algorithm will solve the BMIs problems as
follows,
Step 1. Let G,=Lp=1,e=1.

Solve for @, @, Z the LMI set (28)-(31).
Step 2. Given @, @, Z, solve for G, p,¢,

min (tr(G,) +p)
Step 3. Given G, p,e.

Solve for @, @, Z, min (¢r(Q))

Step 4. If some conditions on the size of E are
fulfilled, then stop, otherwise, go to Step 2.

IV. Numerical Example

Consider the system  with state  feedback

u(t) =Kz(t) (3],

z(t) = (A+DF(t) By)x (t) + (B+ DF (t) By )sat (u(t)),

(32)
where
_ 101 —0.1 _ 15 0] _ 11
4=i01 ~3 - B={01P= 3501}

(0.7283 0.0338)

Bi=E=11 14, K= —i90135 1.3583

wy =5, wy=2.

Graphical comparisons between our regions of
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attraction and that obtained by the method in
Henrion and Tarbouriech (1999) are shown in Fig 2.
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Figure 2 Region of attraction

V. Conclusions
In this paper, a new technology is presented to
obtain a less conservative sufficient condition for the
stability of the uncertain linear system with input
saturation. Piecewise Lyapunov functions are
determined to find the region of attraction of the
system. An LMI relaxation method is used to solve
the BMI problem. Numerical example demonstrates

the effectiveness of this method.
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