• Title/Summary/Keyword: LDPC(Low Density Parity Code)

Search Result 125, Processing Time 0.024 seconds

An Efficient Overlapped LDPC Decoder with a Upper Dual-diagonal Structure

  • Byun, Yong Ki;Park, Jong Kang;Kwon, Soongyu;Kim, Jong Tae
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.1
    • /
    • pp.8-14
    • /
    • 2013
  • A low density parity check (LDPC) decoder provides a most powerful error control capability for mobile communication devices and storage systems, due to its performance being close to Shannon's limit. In this paper, we introduce an efficient overlapped LDPC decoding algorithm using a upper dual-diagonal parity check matrix structure. By means of this algorithm, the LDPC decoder can concurrently execute parts of the check node update and variable node update in the sum-product algorithm. In this way, we can reduce the number of clock cycles per iteration as well as reduce the total latency. The proposed decoding structure offers a very simple control and is very flexible in terms of the variable bit length and variable code rate. The experiment results show that the proposed decoder can complete the decoding of codewords within 70% of the number of clock cycles required for a conventional non-overlapped decoder. The proposed design also reduces the power consumption by 33% when compared to the non-overlapped design.

A Design of ALT LDPC Codes Using Circulant Permutation Matrices (순환 치환 행렬을 이용한 ALT LDPC 부호의 설계)

  • Lee, Kwang-Jae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.1
    • /
    • pp.117-124
    • /
    • 2012
  • In this paper, we propose a simple H parity check matrix from the CPM(circulant permutation matrix), which can easily avoid the cycle-4, and approach to flexible code rates and lengths. As a result, the operations of the submatrices will become the multiplications between several CPMs, the calculations of the LDPC(low density parity check) encoding could be simplest. Also we consider the fast encoding problem for LDPC codes. The proposed constructions could lead to fast encoding based on the simplest matrices operations for both regular and irregular LDPC codes.

Multi-Size Circular Shifter Based on Benes Network with High-Speed 3×3 Switch (고속 3×3 스위치를 이용한 Benes 네트워크 기반 Multi-Size Circular Shifter)

  • Kang, Hyeong-Ju
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.11
    • /
    • pp.2637-2642
    • /
    • 2015
  • The low-density parity check(LDPC) code is being widely used due to its outperformed error-correction ability. The decoder of the quasi-cyclic LDPC(QC-LDPC) codes, a kind of LDPC codes, requires a multi-size cyclic shifter(MSCS) performing rotation of various sizes. The MSCS can be implemented with a Benes network, which requires a $3{\times}3$ switch if the number of data to be rotated is a multiple of 3. This paper proposes a control signal generation with lower complexity and a faster $3{\times}3$ switch. For the experiment, the proposed schemes are applied to the MSCS of an IEEE 802.16e WiMAX QC-LDPC code decoder. The result shows that the delay is reduced by about 8.7%.

Performance of LDPC with Message-Passing Channel Detector for Perpendicular Magnetic Recording Channel (수직자기기록 채널에서 LDPC를 이용한 메시지 전달 방식의 채널 검출 성능비교)

  • Park, Dong-Hyuk;Lee, Jae-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.4C
    • /
    • pp.299-304
    • /
    • 2008
  • For perpendicular magnetic recording channels, it is hard to expect improving the performance by using the PRML or NPML. Hence, we exploit LDPC code to improve the performance. In this paper, we examine a single message-passing detector/decoder matched to the combination of a perpendicular magnetic recording channel detector and an LDPC code decoder. We examine the performance of channel iteration with joint LDPC code on perpendicular magnetic recording channel, and simplify the complexity of the message-passing detector algorithm.

Design of a Low-Power LDPC Decoder by Reducing Decoding Iterations (반복 복호 횟수 감소를 통한 저전력 LDPC 복호기 설계)

  • Lee, Jun-Ho;Park, Chang-Soo;Hwang, Sun-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.9C
    • /
    • pp.801-809
    • /
    • 2007
  • LDPC Low Density Parity Check) code, which is an error correcting code determined to be applied to the 4th generation mobile communication systems, requires a heavy computational complexity due to iterative decodings to achieve a high BER performance. This paper proposes an algorithm to reduce the number of decoding iterations to increase performance of the decoder in decoding latency and power consumption. Measuring changes between the current decoded LLR values and previous ones, the proposed algorithm predicts directions of the value changes. Based on the prediction, the algorithm inverts the sign bits of the LLR values to speed up convergence, which means parity check equation is satisfied. Simulation results show that the number of iterations has been reduced by about 33% without BER performance degradation in the proposed decoder, and the power consumption has also been decreased in proportional to the amount of the reduced decoding iterations.

Simplified 2-Dimensional Scaled Min-Sum Algorithm for LDPC Decoder

  • Cho, Keol;Lee, Wang-Heon;Chung, Ki-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1262-1270
    • /
    • 2017
  • Among various decoding algorithms of low-density parity-check (LDPC) codes, the min-sum (MS) algorithm and its modified algorithms are widely adopted because of their computational simplicity compared to the sum-product (SP) algorithm with slight loss of decoding performance. In the MS algorithm, the magnitude of the output message from a check node (CN) processing unit is decided by either the smallest or the next smallest input message which are denoted as min1 and min2, respectively. It has been shown that multiplying a scaling factor to the output of CN message will improve the decoding performance. Further, Zhong et al. have shown that multiplying different scaling factors (called a 2-dimensional scaling) to min1 and min2 much increases the performance of the LDPC decoder. In this paper, the simplified 2-dimensional scaled (S2DS) MS algorithm is proposed. In the proposed algorithm, we figure out a pair of the most efficient scaling factors which multiplications can be replaced with combinations of addition and shift operations. Furthermore, one scaling operation is approximated by the difference between min1 and min2. The simulation results show that S2DS achieves the error correcting performance which is close to or outperforms the SP algorithm regardless of coding rates, and its computational complexity is the lowest comparing to modified versions of MS algorithms.

Nonbinary Multiple Rate QC-LDPC Codes with Fixed Information or Block Bit Length

  • Liu, Lei;Zhou, Wuyang;Zhou, Shengli
    • Journal of Communications and Networks
    • /
    • v.14 no.4
    • /
    • pp.429-433
    • /
    • 2012
  • In this paper, we consider nonbinary quasi-cyclic low-density parity-check (QC-LDPC) codes and propose a method to design multiple rate codes with either fixed information bit length or block bit length, tailored to different scenarios in wireless applications. We show that the proposed codes achieve good performance over a broad range of code rates.

Detection of Colluded Multimedia Fingerprint using LDPC and BIBD (LDPC와 BIBD를 이용한 공모된 멀티미디어 핑거프린트의 검출)

  • Rhee Kang-Hyeon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.43 no.5 s.311
    • /
    • pp.68-75
    • /
    • 2006
  • Multimedia fingerprinting protects multimedia content from illegal redistribution by uniquely marking every copy of the content distributed to each user. Differ from a symmetric/asymmetric scheme, fingerprinting schemes, only regular user can know the inserted fingerprint data and the scheme guarantee an anonymous before recontributed data. In this paper, we present a scheme which is the algorithm using LDPC(Low Density Parity Check) for detection of colluded multimedia fingerprint and correcting errors. This proposed scheme is consists of the LDPC block, Hopfield Network and the algorithm of anti-collusion code generation. Anti-collusion code based on BIBD(Balanced Incomplete Block Design) was made 100% collusion code detection rate about the linear collusion attack(average, AND and OR) and LD% block for the error bits correction confirmed that can correct error until AWGN 0dB.

Performance of LDPC Product Code According to Error Factors on Holographic Data Storage System (홀로그래픽 데이터 저장장치 시스템에서 오류요인에 따른 LDPC 곱부호의 성능)

  • Jeong, Seongkwon;Lee, Jaejin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.5
    • /
    • pp.3-7
    • /
    • 2017
  • Holographic data storage system (HDSS) features short access times, high storage capacities, and fast transfer rates, since the data is recorded and read not by lines but by pages within a volume of holographic material. Burst error caused by physical impact on the high density storage system becomes very longer than that of conventional storage systems. This paper proposes an LDPC product code using two LDPC code to resolve burst error. When a total code rate is similar, the performance of two LDPC code having high code rate is better than that of one LDPC code having low code rate. Also, with error factors of two-dimensional intersysbol interference and misalignment, the proposed scheme can improve the performance in holographic data storage system.

A Design of Sign-magnitude based Multi-mode LDPC Decoder for WiMAX (Sign-magnitude 수체계 기반의 WiMAX용 다중모드 LDPC 복호기 설계)

  • Seo, Jin-Ho;Park, Hae-Won;Shin, Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.11
    • /
    • pp.2465-2473
    • /
    • 2011
  • This paper describes a circuit-level optimization of DFU(decoding function unit) for LDPC decoder which is used in wireless communication systems including WiMAX and WLAN. A new design of DFU based on sign-magnitude arithmetic instead of two's complement arithmetic is proposed, resulting in 18% reduction of gate count for 96 DFUs array used in mobile WiMAX LDPC decoder. A multi-mode LDPC decoder for mobile WiMAX standard is designed using the proposed DFU. The LDPC decoder synthesized using a 0.18-${\mu}m$ CMOS cell library with 50 MHz clock has 268,870 gates and 71,424 bits RAM, and it is verified by FPGA implementation.