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Simplified 2-Dimensional Scaled Min-Sum Algorithm for LDPC Decoder

Keol Cho*, Wang-Heon Lee** and Ki-Seok Chung†

Abstract – Among various decoding algorithms of low-density parity-check (LDPC) codes, the min-
sum (MS) algorithm and its modified algorithms are widely adopted because of their computational 
simplicity compared to the sum-product (SP) algorithm with slight loss of decoding performance. In 
the MS algorithm, the magnitude of the output message from a check node (CN) processing unit is 
decided by either the smallest or the next smallest input message which are denoted as min1 and min2, 
respectively. It has been shown that multiplying a scaling factor to the output of CN message will 
improve the decoding performance. Further, Zhong et al. have shown that multiplying different scaling 
factors (called a 2-dimensional scaling) to min1 and min2 much increases the performance of the 
LDPC decoder. In this paper, the simplified 2-dimensional scaled (S2DS) MS algorithm is proposed. 
In the proposed algorithm, we figure out a pair of the most efficient scaling factors which 
multiplications can be replaced with combinations of addition and shift operations. Furthermore, one 
scaling operation is approximated by the difference between min1 and min2. The simulation results 
show that S2DS achieves the error correcting performance which is close to or outperforms the SP 
algorithm regardless of coding rates, and its computational complexity is the lowest comparing to 
modified versions of MS algorithms.

Keywords: Error-correction code, Low-density parity-check code, LDPC decoder, Min-sum 
algorithm, Normalized min-sum algorithm

1. Introduction

Low-density parity-check (LDPC) codes were 
introduced by Gallager [1], but hardly attracted attention 
due to its high hardware implementation complexity. 
However, Mackay and Neal rediscovered advantages of 
LDPC codes in 1996 [2], and various researches, such as 
improving error-correcting performance, implementing 
efficient LDPC decoders, and lowering power consumption 
of LDPC decoders, have been conducted [3-5]. Due to their 
near Shannon limit performance [6], easily parallelizable 
characteristics, and linear decoding complexity, LDPC 
codes have become popular error correcting codes in many 
modern communication systems which require faster and 
higher data rates without any error. LDPC codes have 
been adopted as forward-error correction (FEC) codes in 
several emerging communication standards, such as IEEE 
802.11n/ac (Wi-Fi) [7, 8], IEEE 802.11ad (WiGig) [9], and 
IEEE 802.3an (10 Gbase-T Ethernet) [10].

An LDPC code is uniquely defined by an M by N parity 
check matrix H, where M is the number of the parity 
checks and N is the length of the codeword. The matrix H
for a binary LDPC code is very sparse with few nonzero 
elements. As shown in Fig. 1, the H matrix is also 

described by a bipartite graph [11], which is composed of 
variable nodes (VNs) for columns of the H matrix in one 
partite and check nodes (CNs) for rows of the H matrix in 
the other. An edge is connected between VN i and CN j if 
the element of the i-th column and the j-th row is one. The 
number of VNs connected to a CN is the degree of CN, dc, 
and the number of CNs connected to a VN is the degree of 
VN, dv. An LDPC code with constant dv and dc is called (dv, 
dc)-regular code; otherwise, it is called an irregular code.

The LDPC codes are typically decoded by a message-
passing algorithm, which iteratively exchanges messages 
through the edges between the CNs and the VNs. In the 
sum-product (SP) algorithm, also known as the belief-
propagation (BP) algorithm, messages are exchanged in the 
form of log-likelihood ratios (LLRs) between CNs and 
VNs [1]. The SP algorithm achieves a powerful decoding 
performance close to the Shannon limit, but suffers from 
high computational complexity. The computational 
complexity of the SP algorithm can be greatly reduced by 
using the min-sum (MS) approximation [12], but slight 
performance loss is incurred. To resolve the performance 
loss of the MS algorithm, many modified versions of the 
MS algorithm have been proposed. Most of them have 
tried to multiply the check to variable node (CTV) 
messages by a scaling factor to compensate for over-
estimated belief messages in comparison to the SP 
algorithm, and thus, these approaches are commonly called 
normalized MS (NMS) algorithms [13, 14]. In [15], the 
CTV messages are adjusted by an offset based on the 
number of VNs connected to the CNs, and the CTV 
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messages are adaptively scaled based on the iteration count 
[16, 17]. In [18], the first two smallest CTV messages are 
scaled by different scaling factors using density evolution 
to improve the decoding performance. Even though the 
existing algorithms enhance the performance of LDPC 
decoders, [15, 16], and [18] did not take the hardware 
implementation cost into account, and [17] suffered from 
the increased average iteration count until the decoding 
process is completed.

To estimate the hardware cost of the LDPC decoder, the 
number of bits to quantize the exchanged messages should 
be considered because it directly affects both the error-
correcting capability and the hardware cost of the decoder. 
The hardware implementation cost typically includes the 
decoder circuit size and the amount of memory usage. 
Studies have shown that there is slight performance loss 
when 5 or 6 bit fixed point representation is used to 
quantize the message compared to floating point 
representation [19, 20]. [21] aggressively quantized the 
CTV message using only 2 bits, but the performance loss 
was about 0.3 dB. Finding the first two minima among VN 
to CN (VTC) messages is usually adopted when MS-based 
LDPC decoders are implemented in hardware due to the 
efficiency in memory usage [22]. B. Xiang et al. [23] 
showed that instead of sending the two found minima, 
the interconnection complexity and memory usage could 
be reduced by compressing CTV messages using the 
difference of the two minima (Δmin) which will need a 
smaller quantization bit width. By this compression, the 
memory usage is reduced by 5.64% while the performance 
loss is up to 0.15 dB.

In this paper, a new decoding algorithm which both the 
decoding performance and the complexity of hardware
implementation of LDPC decoder are taken into account 
based on the MS algorithm is proposed. As reported in [18], 
applying two dimensional (2D) scaling factors to the first 
two minima improves the decoding performance. In the 
proposed algorithm of this paper, the 2D scaling factors are 
determined so that the hardware cost is minimized without 
losing the decoding performance. In addition, these scaling 
factors are further optimized by using the Δmin of the CTV 

message, and achieves 0.2 to 0.5 dB coding gain with the 
least computational complexity compared to modified 
versions of MS algorithms.

The remainder of this paper is organized as follows. In 
section 2, representative decoding algorithms of the LDPC
code are briefly introduced. The proposed decoding 
algorithm is explained in detail in section 3, and the 
experimental results are described with the complexity 
analysis in section 4. Finally, our conclusions are presented 
in section 5.

2. Decoding Algorithms of the LDPC Code

In this section, representative decoding algorithms of the 
LDPC code will be described. Let us suppose that the 
LDPC code is defined by an M by N parity check matrix. 
The set of VNs neighboring CN j ( � = 1,2,… ,� ) is 
denoted as Vj, and the set of CNs neighboring VN i
(� = 1,2,… , �) is denoted as Ci. Also, ��\� denotes the 
subset of VNs excluding the i-th VN, and ��\� represents 
the subset of CNs excluding the j-th CN. The LDPC 
decoder iteratively updates the belief messages and 
estimates codewords using the following information.

Fi : The initial LLR value (a priori LLR) of the i-th
bit. It is derived from the received vector, yi.

��→�
(�) : The CTV message; the message sent from CN j to 

VN i at the l-th iteration count. It is obtained from 
the extrinsic VTC messages ���→� , where 
�′ ∈ V�\�.

��→�
(�) : The VTC message; the message sent from VN i to 

CN j at the l-th iteration count. It is obtained from 
Fi and the extrinsic CTV message ���→� , where 
�′ ∈ C�\�.

zi : The a posteriori LLR of the i-th bit computed at 
each iteration. It is obtained from Fi and the 
information ��→�

(�) .

2.1 Sum-product algorithm

The SP algorithm assuming that codewords are 
modulated by binary phase shift keying (BPSK) and they 
are transmitted over additive Gaussian noise channel 
(AWGN) with noise variance, δ2 can be described as 
follows.
- Initialization: For each i, a priori LLR and the initial 

VTC message are updated by

(0)

2

2 i
i j i

y
L F

d
® = = .  (1)

- Iterative steps: For each iteration count l (l = 1, …, 
max_iteration) the three following steps are processed.
1) Check node process: For each j, i, update CTV 

message by

Fig. 1. An example of the H matrix for LDPC code and its 
bipartite graph representation
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2) Variable node process: For each j, i, update VTC 
message by
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and update a posteriori LLR by
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3) Tentative decision and stopping criterion test:
i) In the tentative decision, the estimated codeword 

1 2
ˆ ˆ ˆ ˆ{ , ,..., }Nc c c=c is constructed based on zi by

1 2

0, 0
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ii) If either the syndrome check, H · c�T = 0, or the 
number of iterations reaches the predefined 
maximum count, c�	 becomes the output of the 
decoder. When the syndrome check is not satisfied, 
the decoder goes back to 2) and increments the 
iteration count.

2.2 Min-sum algorithms

In the MS algorithm, (3), (4), and (5) are equivalent to 
the SP algorithm. Instead of (1), the MS algorithm 
initializes Fi and ��→�

(�) with 

(0)
i j i iL F y® = =    (6)

and the CN process (3) is approximated by the minimum 
finding function as follows:

( ) ( )( ) ( )
' '

'
'

1 1

\
\

sign min
j

j

l l l

j i i j i ji V i
i V i

L L L- -

® ® ®Î
Î

= Õ (7)

The approximation of the CTV message in the MS 
algorithm is known to be overestimated compared to the 
CTV message of the SP algorithm, [13] and [14] normalize 
the CTV message using scaling factor, α. With the 
normalization, (7) is rewritten by

( ) ( )( ) ( )
' '

'
'

1 1

\
\

sign min
j

j

l l l

j i i j i ji V i
i V i

L L La - -

® ® ®Î
Î

= Õ (8)

It is proven that the optimal α varies according to the 
code rate, the signal-to-noise (SNR) ratio, and the 
codeword length [24]. Therefore, various researches have 

followed in order to figure out α for the best error 
correcting performance or for the most efficient hardware 
implementation [15-18, 20]. 

In [15], degree match two-step MS (DM2S) has been 
proposed. DM2S compensates CTV messages by subtracting
positive correction factors, which is derived by logarithmic 
calculation of dc. In DM2S, CNs have different correction 
factors according to their own dc’s, and the steps are 
decided by the magnitude of the smallest LLR and the 
distance between the first two smallest magnitudes of 
LLRs. 

[16] and [17] adaptively adjust α according to the 
iteration count of the decoding process, and the adjustment 
is based on the fact that the reliability of the LLRs is 
improved as the iteration count goes up. Generalized 
simplified variable-scaled MS (GSVS) algorithm [17] 
divides the iteration count into four steps and the initial 
scaling factor α0 is increased as follows: α0, 0.5 + 0.5·α0, 
0.75 + 0.25·α0, and 0.875 + 0.125·α0. 

In (7), the minimum should be found for all of the 
neighboring VNs excluding the i-th VN, which implies that 
the magnitude of CTV message is either the smallest LLR 
or the next smallest LLR. Thus, the minimum finding part 
in (7) can be replaced by

( )
' '

\

min 2,   if the index of min1
min

min1,                        otherwisej

l

i j
i V i

i
L ®

Î

=ì
= í
î

(9)

where min1 and min2 are the first and the second 
minimum, respectively. Zhong et al. [18] have shown that 
2-dimensional scaling (2DS) of min1 and min2 by α1 and 
α2 (0 < α1 < α2 < 1.0), respectively, achieves almost 0.4 dB 
coding gain compared to a single scaling factor. However, 
the scaling factors of 2DS and DM2S do not consider the 
hardware implementation cost of the LDPC decoder. 

In order to reduce the implementation complexity, a 
modified 2DS MS algorithm, called simplified 2-
dimensional scaled (S2DS) MS algorithm, is proposed in 
this paper. First of all, scaling factors for 2-dimensional 
MS which is called hardware considered 2D scaling factors 
(H-2DS) are chosen to achieve less complex decoder 
implementation. Further, the computational complexity of 
the scaling operation is reduced in S2DS using the Δmin 
approximation, which has been proposed in [23]. 

3. Simplified 2-Dimensional Scaled Min-sum 

Algorithm

3.1 Low complexity 2D scaling factors

The optimal scaling factors of 2DS vary according to the 
SNR [18]. Without considering the cost of the hardware 
implementation of LDPC decoder, 2DS requires multi-
plying min1 and min2 by α1 = 0.4902 and α2 = 0.9174, 
respectively. It is obvious that multiplying the two minima 



Keol Cho, Wang-Heon Lee and Ki-Seok Chung

http://www.jeet.or.kr │ 1265

by these scaling factors is quite complicated in aspect of 
hardware implementation. To figure out the best H-2DS 
which will require less complex computational complexity, 
we have carried out simulations with varying α1 and α2

from 0.5 to 1.0 with increments of 0.125. It should be 
noted that multiplication the two minima by these scaling 
factors can be implemented with the combination of add 
and shift operations. For the simulation, the subsets of 
LDPC codes defined in IEEE 802.11ad applications [9], 
which are irregular and have block length N and dimension 
K, (N, K) = (672, 336) and (672, 504), is chosen. For a 
regular LDPC code, (408, 204) code with (dv, dc) = (3, 6) is 
chosen. The maximum iteration count is set to 20, and a 
priori LLRs and the exchanging LLRs have been simulated 
using the floating point arithmetic. The simulation with the 
BPSK transmission of the all-zero codeword over the 
AWGN channel was carried out until the number of frame 
errors reached at least 100. 

Through the simulations, it turns out that the best 
performance is achieved with α1 = 0.75 and α2 = 0.875, and 

the corresponding results of the bit-error rate (BER) 
performance comparison with the SP and MS algorithms 
are depicted in Fig. 2. The solid lines and the dashed lines 
in Fig. 2(a) represent the BER simulation results of the 
(672, 336) code and the (672, 504) code, respectively, and
Fig. 2(b) shows the result of the (408, 204) regular LDPC 
code. Regardless of the degree regularity and the code rate 
of the LDPC code, H-2DS achieves coding gains from 0.4 
dB to 0.6 dB compared to the MS algorithm at BER of 10-5, 
and H-2DS even outperforms the SP algorithm in high 
SNR regions. As aforementioned, multiplications with 0.75 
and 0.875 can be implemented by a combination of add 
and shift operations. The scaling x with 0.75 can be 
implemented as 0.75·x = x/2 + x/4 and the scaling x with 
0.875 can be implemented as 0.875·x = x/2 + x/4 + x/8. 
According to (8) and (9), the magnitude of the CTV 
message of the normalized MS algorithm is calculated as 
follows

( ) 2

1

min 2,   if the index of min1
min1,                        otherwise

l

j i

i
L

a
a®

× =ì
= í ×î

(10)

and the CTV message consists of {signs, index of min1, 
α1·min1, α2·min2}. When a single scaling factor is used, α1

of (10) is equal to α2 (α1 = α2 = α), which means that it is 
still required two multiplications (or few shifts and 
addition) for scaling in the CN unit (min1 and min2 with α). 
On the other hand, H-2DS requires only shift and add 
operations, and due to the fact that the scaling factor 0.875 
can be computed with only one more add and shift 
operations in addition to computing the scaling factor 0.75, 
only one arithmetic circuit can be used for both scaling 
operations in a serial manner to save the hardware 
implementation cost. 

3.2 Simplified 2D scaling with Δmin

Based on the pair of scaling factors of H-2DS, the 
proposed S2DS decoding algorithm further reduces the 
computational complexity using Δmin information [23]. In 
[23], the CTV message is compressed using the difference 
between min1 and min2, Δmin (=min2 – min1). Thus, a 
CTV message consists of {signs, index of min1, min1, 
Δmin}, which reduces the memory usage and the inter-
connection complexity of the LDPC decoder compared to 
sending min1 and min2. 

Utilizing Δmin information, S2DS replaces the scaling 
operation, 0.875·min2 by the following computation under 
the assumption that the magnitudes of min1 and Δmin are 
similar: 

0.875 min 2 0.875 (min1 min)

0.875 min1 0.875 min

0.75 min1 0.125 min1 0.875 min

                    0.75 min1 min ( . min1 min)

=

iff

× = × + D

= × + ×D

× + × + × D

» × + D » D

. (11)

(a) (672, 336) and (672, 504) irregular codes

(b) (408, 204) regular code (dv, dc) = (3, 6)

Fig. 2. BER performance of hardware-considered 2DS
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Fig. 3. The average magnitudes of min1, min2, and Δmin

Under this approximation, the CTV message of S2DS 
consists of {signs, index of min1, 0.75·min1, Δmin}, and 
S2DS requires only one scaling operation in the CN unit 
instead of two. 

To prove that the above assumption is valid, we have 
carried out an analysis that compares the magnitudes of 
min1, min2, and Δmin. The (672, 546) code in IEEE 
802.11ad [9] over AWGN channel was chosen for the 
analysis, and the average magnitudes of min1, min2, and 
Δmin of 500,000 codewords were calculated varying SNRs. 
The analysis results are summarized in Fig. 3, which shows 
that the magnitude of min1 is similar to that of Δmin. 

3.3 Fixed-point implementation

To reduce the complexity of a hardware implementation, 
many digital circuits are designed to handle only the fixed 
point numbers. However, such fixed point implementations 
should be concerned about the amount of the quantization 
error that will result in a performance degradation. In this 
paper, the BER performance of the S2DS algorithm is 
estimated with a fixed-point Qm.f, where an (m + f )-bit 
fixed-point LLR message consists of m integer bits and f
fractional bits. The exchanged LLR messages are quantized
with 5 bits excluding the sign bit because 5 bit quantization 
gives the best tradeoff between the performance and the 
hardware cost [24]. By varying m and f, we have carried 
out simulations to figure out which Qm.f within 5 bits 
(Q1.4, Q2.3, Q3.2, and Q4.1) shows the best performance. 

The simulations have been conducted under the same 
conditions in section 3.1. The (672, 336) code and the (672, 
504) code are modulated in BPSK and are transmitted over 
the AWGN channel with 20 as the maximum iteration 
count. The BER performance comparison results of the 
S2DS algorithm with 5 bit quantization are shown in Fig. 4, 
where the solid lines are for the (672, 336) code and the 
dashed lines are for the (672, 504) code. For both codes, 
Q1.4 and Q4.1 suffer from significant performance 
degradation, so the results are not depicted in Fig. 4, 
whereas Q2.3 shows the best decoding performance and 
does not suffer from an error floor at high SNR regions 

compared to SP and Q3.2.

4. Simulation Results

The simulation results are presented to show the 
performance of the S2DS algorithm by comparing with the 
simulation results are presented to show the performance 
of the S2DS algorithm by comparing with the other MS-
based algorithms that were briefly mentioned in the paper: 
SP, MS, GSVS, and DM2S algorithms. The complexity of 
the proposed algorithm is also discussed in this section.

All of four H matrices defined in IEEE 802.11ad 
applications [9] are used for the simulation. These four 
LDPC codes are irregular and consist of rates 1/2, 3/4, 5/8, 
and 13/16 with a common length of 672 bits: (672, 336), 
(672, 504), (672, 420), and (672, 546) codes, respectively. 
BPSK transmission of the all-zero codeword over the 
AWGN channel was used. Simulations were running until 
at least 400 frame errors were counted at low and middle 
SNR simulation points and 100 frame errors for high 
SNR points. The maximum allowable iteration count was 
set to 20. 

The SP and DM2S algorithms were simulated using a 
floating-point arithmetic, and the MS and GSVS were 
simulated using a Q4.6 fixed-point arithmetic. The initial 
scaling factor, α0, of GSVS was set to 0.5. For each 
iteration step, the following scaling factors were used: 0.5, 
0.75, 0.875, and 0.9375.

4.1 Decoding performance

The simulation results are compared with the S2DS with 
Q2.3. As shown in Fig. 5, S2DS algorithm shows the best 
performance among all the MS-based decoding algorithms. 
Fig. 5(a), (c), and (d) shows that S2DS achieves the 
performance close to the SP performance and does not 

Fig. 4. BER performance of S2DS algorithm in Q3.2 and 
Q2.3 with SP algorithm in floating point arithmetic
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suffer from an error floor at high SNR points. In the case of 
high coding rates as shown in Fig. 5 (b), S2DS outperforms 
SP. It is proven that the SP algorithm does not provide the 
optimal decoding method in short code lengths [13]. 

For more precise comparison of the decoding perfor-
mance, the coding gains compared to MS at a BER of 10-5

have been analyzed with two more LDPC codes in [7] 
which have different code lengths (N=1296 and N=1944) 
and dimensions with those of in Fig.5. As shown in Fig. 6 
which depicts the coding gains for various LDPC codes, 
S2DS achieves overall coding gain close to SP (less than 
0.02 dB) and more than DM2S (from 0.07 dB to 0.3 dB). 
However, the coding gains of GSVS fluctuate with codes. 
It implies that it is crucial to figure out the best performing 
scaling factor sets for GSVS, which requires more 
computational logics for sets of scaling factors. In contrast, 
S2DS uses a constant scaling factor and achieves much 
better performance.

More aggressive quantization of Δmin information was 
also examined. However, Q1.2 and Q2.1 for Δmin showed 
significant performance degradation. Q2.2 for Δmin 
showed a performance drop about 0.05 dB, but suffered 
from early error floors at high SNR points.

4.2 Computational complexity

In this section, the computational complexity of various 
decoding algorithms is analyzed. Table 1 summarizes the 
computational complexity of the CN processing in each 
iteration. The set of the basic arithmetic operations is 
listed with extra operations besides the basic operations in 
the remarks. For example, the SP algorithm requires 

floating point multiplications and divisions including the 
hyperbolic tangent calculation. The comparison column 
shows the required number of comparisons to find the first 
two minimum values (dc + log2 dc - 2) for MS algorithm 
[22].

The MS algorithm requires the least amount of 
computation among all of the decoding algorithms, and 
S2DS requires the second least. DM2S requires more 
computations including natural logarithms for the 
thresholds and their subjects. GSVS requires quite a few 
combinations of shift and addition operations to compute 
the scaling factor sets, and an additional counter and a 
comparator are required for choosing the step that decides 
which scaling factors will be used. However, S2DS 
requires only a single scaling factor that is computed by 
two shift operations and one addition, and a Δmin 
information obtained from one subtraction. Furthermore, 
since the scaling operation of S2DS remains the same for 
different coding rates, only one scaling unit is required 
when a multi-rate LDPC decoder is implemented. 
Considering that SP requires multiplications and divisions 
and DM2S requires divisions and logarithmic com-
putations, S2DS can be claimed to the best when both the 
computational complexity and the decoding performance 
are taken into account.

5. Conclusion

This paper proposed a simple yet powerful 2-
dimensional scaled min-sum algorithm called S2DS min-
sum algorithm. We figure out scaling factors with which 

Table 1. Computational complexity of a check node within a single iteration

Decoding algorithms Multiplication Division Comparison Addition Subtraction Bit shift Remarks
SP dc dc - 1 0 0 0 0 tanh, tanh-1

MS 0 0 dc + log2 dc - 2 0 0 0 -
NMS (0.75) 0 0 dc + log2 dc - 2 2 0 4 -

DM2S 0 0 dc + log2 dc + 2 2 3 4 logarithm
GSVS 0 0 dc + log2 dc - 1 7 0 9 iteration counter
S2DS 0 0 dc + log2 dc - 2 1 1 2 -

Fig. 6. Coding gain compared to MS at a BER of 10-5 with various LDPC codes: N=672 codes in [9], N=1296 and N=1944 
in [7]
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scaling operation can be simplified. Further, we show 
that one scaling operation is approximated by the
difference between min1 and min2. Therefore, our 
proposed algorithm reduced the complexity of the check 
node computation significantly. In spite of the simplicity, 
the proposed S2DS algorithm achieves coding gains from 
0.2 dB to 0.4 dB compared to the other min-sum based 
decoding algorithms, and its performance is consistently 
good regardless of the coding rate or the irregularity of the 
LDPC codes.
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