• Title/Summary/Keyword: L. lactis

Search Result 218, Processing Time 0.025 seconds

Characteristics of the Plasmid pCS100 Containing Nisin Resistant Gene from Lactococcus lactis subsp. lactis ATCC7962. (Lactococcus lactis subsp. lactis ATCC 7962의 nisin 저항성 유전자를 포함하는 plasmid pCS100의 특성규명)

  • 송종효;이형주;김정환;정대균
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.6
    • /
    • pp.562-565
    • /
    • 1998
  • Nisin-producing and nisin resistant L. lactis subsp. lactis ATCC7962 harbored six plasmids. To find a plasmid containing a nisin resistant gene, these plasmids were transformed into L lactis LM0230 of plasmid-free and nisin sensitive strain. After screening on nisin selection media containing nisin (150 $\mu\textrm{g}$/$m\ell$), several nisin resistant transformants were obtained and the level of nisin resistance was very similar to that of wild type L lactis subsp. lactis ATCC7962. A 26.5 kb plasmid, named as pCS100, which confers resistance to nisin, was identified in transformants. The pCS100 was digested with EcoRI and Southern blot hybridization was done with nisI probe to localize the nisin resistant gene. A 4 kb EcoRI fragment showed a strong positive signal, and it was cloned into pBluescript for the potential selection marker.

  • PDF

Potential Anti-Allergy and Immunomodulatory Properties of Lactococcus lactis LB 1022 Observed In Vitro and in an Atopic Dermatitis Mouse Model

  • Jihye Baek;Jong-Hwa Kim;Wonyong Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.6
    • /
    • pp.823-830
    • /
    • 2023
  • Lactococcus lactis is a lactic acid bacterium and used in the dairy food industry. The ameliorating effects of Lactobacillus species on atopic dermatitis (AD) have been extensively studied, but the specific effect of L. lactis strains has not yet been investigated. In this study, the efficacy of L. lactis LB 1022, isolated from natural cheese, was evaluated using RAW 264.7, HMC-1 and HaCaT cell lines and an ovalbumin-sensitized AD mouse model. L. lactis LB 1022 exhibited nitric oxide suppression and anti-allergy and anti-inflammatory activity in vitro. Oral administration of L. lactis LB 1022 to AD mice significantly reduced the levels of IgE, mast cells, and eosinophils, and a range of T cell-mediated T helper Th1, Th2, and Th17-type cytokines under interleukin (IL)-10, transforming growth factor-β (TGF-β), thymus and activation-regulated chemokine (TARC), and thymic stromal lymphopoietin (TSLP). In addition, L. lactis LB 1022 treatment increased the concentration of short-chain fatty acids. Overall, L. lactis LB 1022 significantly modulated AD-like symptoms by altering metabolites and the immune response, illustrating its potential as candidate for use in functional food supplements to alleviate AD.

Expression of $\beta$-Galactosidase Gene of Lactococcus lactis ssp. lactis ATCC 7962 in Lactococcus lactis ssp. lactis MG1363

  • Park, Rae-Jun;Lee, Jung-Min;Chang, Hae-Choon;Chung, Dae-Kyun;Lee, Jong-Hoon;Lee, Hyong-Joo;Kim, Jeong-Hwan
    • Preventive Nutrition and Food Science
    • /
    • v.5 no.3
    • /
    • pp.153-159
    • /
    • 2000
  • A 4.4 kb DNA fragment encompassing lacA (galactoside acetyltransferase) and lacZ($\beta$-galactosidase) genes from Lactococus lactis ssp. lactis ATCC 7962 (L. lactis 7962) was introduced ito a Lac strain, Lactococcus lactis ssp. lactis MG1363 (L. lactis MG1363) by using a lactococcal expression vector, pMG36e and expression level of lacZ was examined. Growth rates and $\beta$-galactosidase ($\beta$-gal) activities of MG1363 cells carrying recombinant plasmid, pMLZ3, on M17 broth containing different carbon sources (1%, w/v) were examined. Contrary to the expectations, MG1363 [pMLZ3] grown on lactose showed the lowest enzyme activity (17 units) and cells grown on galactose had the highest $\beta$-gal activity (41 units). Cells grown on glucose had intermediate activity (33 units). These activities are about one tenth of the values observed in L. lactis 7962 where lacZ is present as a single-copy gene in the chromosome. When the cellular concentrations of lacZ transcript were examined using slot blot hybridization, it was found that MG1363[pMLZ3] produced sufficient amounts of transcript. These results indicate that either proteolytic degradation of $\beta$-gal or other regulatory mechanism prevent the translation or accumulation of $\beta$-gal in L. lactis MG1363 cells. In regard to regulation, the presence of the ccpA gene in L. lactis MG1363 was confirmed by Southern blot.

  • PDF

Selection of Lactococcus lactis HY7803 for Glutamic Acid Production Based on Comparative Genomic Analysis

  • Lee, Jungmin;Heo, Sojeong;Choi, Jihoon;Kim, Minsoo;Pyo, Eunji;Lee, Myounghee;Shin, Sangick;Lee, Jaehwan;Sim, Jaehun;Jeong, Do-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.2
    • /
    • pp.298-303
    • /
    • 2021
  • Comparative genomic analysis was performed on eight species of lactic acid bacteria (LAB)-Lactococcus (L.) lactis, Lactobacillus (Lb.) plantarum, Lb. casei, Lb. brevis, Leuconostoc (Leu.) mesenteroides, Lb. fermentum, Lb. buchneri, and Lb. curvatus-to assess their glutamic acid production pathways. Glutamic acid is important for umami taste in foods. The only genes for glutamic acid production identified in the eight LAB were for conversion from glutamine in L. lactis and Leu. mesenteroides, and from glucose via citrate in L. lactis. Thus, L. lactis was considered to be potentially the best of the species for glutamic acid production. By biochemical analyses, L. lactis HY7803 was selected for glutamic acid production from among 17 L. lactis strains. Strain HY7803 produced 83.16 pmol/μl glutamic acid from glucose, and exogenous supplementation of citrate increased this to 108.42 pmol/μl. Including glutamic acid, strain HY7803 produced more of 10 free amino acids than L. lactis reference strains IL1403 and ATCC 7962 in the presence of exogenous citrate. The differences in the amino acid profiles of the strains were illuminated by principal component analysis. Our results indicate that L. lactis HY7803 may be a good starter strain for glutamic acid production.

Isolation of Dextran-producing Leuconostoc Zactis from Kimchi

  • Kim, Bong-Joon;Min, Bong-Hee;Kim, Jeongho;Han, Hong-Ui
    • Journal of Microbiology
    • /
    • v.39 no.1
    • /
    • pp.11-16
    • /
    • 2001
  • Tentative identification of Leuconostoc lactis IH23 isolated from kimchi (a fermented vegetable product) has been described previously with 16S rDNA sequencing (Choi, 1., M. Sc. Thesis Inha Univ.1999). This strain produced the slime identified as dextran based on IR, $\^$13/C- and $^1$H-NMR spectroscopic results. Further study proved that the isolate IH23 belongs to a homogeneous genetic group with L. lactis DSM 20202$\^$T/ and L. argentinum DSM 8581$\^$T/. The results showed DNA-DNA homology of 99-100%, 16S rDNA gene sequence similarity (97.7% ), and a phylogenetic relationship although L. argentinum DSM 8581$\^$T/ had lower homology (80-91%). These data indicate that L. argentinum DSM 8581$\^$T/ and the isolate IH23 belong to an identical species with L. lactis DSM 20202$\^$T/at the genetic level, although in carbohydrate fermentation, the isolate IH23 was mast closely related to L. argentinum DSM 8581$\^$T/ and quite different from L. lactis DSM 20202$\^$T/. Here we first report the isolation of consistent phenotypic variation in Leuconostoc lactis. We also emphasize that the nomenclature of subspecies needs to be differentiated into the three strains mentioned above in Leuconostoc lactis.

  • PDF

Draft genome sequence of oligosaccharide producing Leuconostoc lactis CCK940 isolated from kimchi in Korea (올리고당을 생산하는 Leuconostoc lactis CCK940 균주의 유전체 염기서열)

  • Lee, Sulhee;Park, Young-Seo
    • Korean Journal of Microbiology
    • /
    • v.54 no.4
    • /
    • pp.445-447
    • /
    • 2018
  • Leuconostoc lactis CCK940, which was isolated from kimchi obtained from a Korean traditional market, produced an oligosaccharide with a degree of polymerization of more than 4. In this study, the draft genome sequence of L. lactis CCK940 was reported by using PacBio 20 kb platform. The genome of this strain was sequenced and the genome assembly revealed 2 contigs. The genome was 1,741,511 base pairs in size with a G + C content of 43.33%, containing 1,698 coding sequences, 12 rRNA genes, and 68 tRNA genes. L. lactis CCK940 contained genes encoding glycosyltransferase, sucrose phosphorylase, maltose phosphorylase, and ${\beta}$-galactosidase which could synthesize oligosaccharide.

Evaluation of γ-Aminobutyric Acid (GABA) Production by Lactic Acid Bacteria Using 5-L Fermentor (Lactic Acid Bacteria (LAB)와 5-L 발효기를 이용한 γ-Aminobutyric Acid 생산기술 개발)

  • Kim, Na Yeon;Kim, Ji Min;Ra, Chae Hun
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.4
    • /
    • pp.559-565
    • /
    • 2021
  • This study aimed to optimize gamma-aminobutyric acid (GABA) production by employing five strains of lactic acid bacteria (LAB) that were capable of high cell growth and GABA production using a modified synthetic medium. GABA production in the strains was qualitatively confirmed via detection of colored spots using thin layer chromatography. Lactobacillus plantarum SGL058 and Lactococcus lactis SGL027 were selected as the suitable strains for GABA production. The conditions of the carbon and nitrogen sources were determined as 5 g/l glucose (L. plantarum SGL058), 5 g/l lactose (L. lactis SGL027), 10 g/l yeast extract (L. plantarum SGL058), and 20 g/l yeast extract (L. lactis SGL027) for GABA production. The cell growth, monitored by optical density at 600 nm, was 5.93 for L. plantarum SGL058. This value was higher than the 3.04 produced by L. lactis SGL027 at 36 h using a 5-L fermenter. The highest concentration of GABA produced was 546.7 ㎍/ml by L. plantarum SGL058 and 404.6 ㎍/ml by L. lactis SGL027, representing a GABA conversion efficiency of (%, w/w) of 4.0% and 3.4%, respectively. The fermentation profiles of L. plantarum SGL058 and L. lactis SGL027 provide a basis for the utilization of LAB in GABA production using a basal synthetic medium.

Behavior of Listeria monocytogenes in skin milk during fermentation by Lactobacillus bulgaricus and Streptococcus lactis (Lactobacillus bulgaricus와 Streptococcus lactis 발효탈지유에서의 Listeria monocytogenes의 생존추이)

  • 박경식
    • Journal of environmental and Sanitary engineering
    • /
    • v.12 no.1
    • /
    • pp.85-95
    • /
    • 1997
  • Behavior of Listeria monocytogenes in Skim milk during fermentation by Lactobacillus bulgaricus YI-2 and Streptococcus lactis FYI-1 were determined. Autoclaved skim milk was inoculated with ca. 10$^{3}$ L. monocytogenes (Strain LM91-1 or LM 96-2) cells/ml, and with 5.0, 1.0, 0.5 or 0.1% of a milk culture of either L. bulgaricus TI-2 or S. lactis FYI-1. Skim milk containing ca. 10$^{3}$ L. monocytogenes was incubated at 37 or 42$\circ $C for 15 h with L. bulgaricus YI-2, and at 21 or 30$\circ $C for 15 h with S. lactis FYI-1. Cultured skim milks were stored at 4$\circ $C in the refrigerater. Samples were plated on Oxford Agar with oxford antimicrobic supplement to enumerate L. monocytogenes and on either modified MRS agar to enumerate lactic acid bacteria. L. monocytogenes survived the 15-h fermentation with S. lactis FYI-1 in all combinations of level of inoculum and temperature of incubation, but inhibition of growth ranged from 94 to 100%. When incubated with over the 1.0% of L. bulgaricus, L. monocytogenes inhibited or disappeared in fermented skim milk from 9 h after incubation. Especially, incubation at 42$\circ $C with 5.0% L. bulgaricus YI-2 as inoculum appeared to be the most effective inhibitory combination for strain LM 91-1, causing 100% inhibition in growth based on maximum papulation attained. In most instances of incubated with L. bulgaricus YI-2, growth of the pathogene appeared to be completely inhibited when the pH dropped below 4.38.

  • PDF

Effects of Lactoferrin and Transferrin on the Growth of Lactococcus lactis subsp. cremoris FC (Lactococcus lactis subsp. cremoris FC에 대한 Lactoferrin과 Transferrin의 생장촉진효과)

  • Kim, Woan-Sub
    • Journal of Dairy Science and Biotechnology
    • /
    • v.35 no.3
    • /
    • pp.196-201
    • /
    • 2017
  • Recent studies have reported that certain lactic acid bacteria and their metabolites, such as exopolysaccharides (EPSs), have immunological effects and can modulate the immune system following oral administration. Lactococcus lactis subsp. cremoris FC is a lactic acid bacteria isolated from fermented milk from Caucasians and has been shown to produce EPSs. In this study, the effects of lactoferrins (apo-lactoferrin, holo-lactoferrin, and native-lactoferrin) and transferrins (apo-transferrin and holo-lactoferrin) on the growth of L. lactis subsp. cremoris FC were examined. The addition of lactoferrins and transferrins to L. lactis subsp. cremoris FC cultures was found to be effective at concentrations of 0.5 or 1 mg/mL.

Bioelectrochemical Mn(II) Leaching from Manganese Ore by Lactococcus lactis SK071115

  • Jeon, Bo-Young;Park, Doo-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.2
    • /
    • pp.154-161
    • /
    • 2011
  • L. lactis sk071115 has been shown to grow more actively and generate lower levels of lactate in glucose-defined medium with nitrate than in medium with Mn(IV). By adding Mn(IV) to a L. lactis culture, lactate production was relatively reduced in combination with Mn(II) production, but cell mass production levels did not increase. Both cell-free extract and intact L. lactis cells reacted electrochemically with Mn(IV) but did not react with Mn(II) upon cyclic voltammetry using neutral red (NR) as an electron mediator. A modified graphite felt cathode with NR (NR-cathode) was employed to induce electrochemical reducing equivalence for bacterial metabolism. Cell-free L. lactis extract catalyzed the reduction of Mn(IV) to Mn(II) under both control and electrochemical reduction conditions; however, the levels of Mn(II) generated under electrochemical reduction conditions were approximately 4 times those generated under control conditions. The levels of Mn(II) generated by the catalysis of L. lactis immobilized in the NR-cathode (L-NR-cathode) under electrochemical reduction conditions were more than 4 times that generated under control conditions. Mn(II) production levels were increased by approximately 2.5 and 4.5 times by the addition of citrate to the reactant under control and electrochemical reduction conditions, respectively. The cumulative Mn(II) produced from manganese ore by catalysis of the L-NR-cathode for 30 days reached levels of approximately 3,800 and 16,000 mg/l under control and electrochemical reduction conditions, respectively. In conclusion, the electrochemical reduction reaction generated by the NR-cathode activated the biochemical reduction of Mn(IV) to Mn(II) by L. lactis.