DOI QR코드

DOI QR Code

Potential Anti-Allergy and Immunomodulatory Properties of Lactococcus lactis LB 1022 Observed In Vitro and in an Atopic Dermatitis Mouse Model

  • Jihye Baek (Department of Microbiology, College of Medicine, Chung-Ang University) ;
  • Jong-Hwa Kim (Department of Microbiology, College of Medicine, Chung-Ang University) ;
  • Wonyong Kim (Department of Microbiology, College of Medicine, Chung-Ang University)
  • Received : 2023.01.12
  • Accepted : 2023.03.03
  • Published : 2023.06.28

Abstract

Lactococcus lactis is a lactic acid bacterium and used in the dairy food industry. The ameliorating effects of Lactobacillus species on atopic dermatitis (AD) have been extensively studied, but the specific effect of L. lactis strains has not yet been investigated. In this study, the efficacy of L. lactis LB 1022, isolated from natural cheese, was evaluated using RAW 264.7, HMC-1 and HaCaT cell lines and an ovalbumin-sensitized AD mouse model. L. lactis LB 1022 exhibited nitric oxide suppression and anti-allergy and anti-inflammatory activity in vitro. Oral administration of L. lactis LB 1022 to AD mice significantly reduced the levels of IgE, mast cells, and eosinophils, and a range of T cell-mediated T helper Th1, Th2, and Th17-type cytokines under interleukin (IL)-10, transforming growth factor-β (TGF-β), thymus and activation-regulated chemokine (TARC), and thymic stromal lymphopoietin (TSLP). In addition, L. lactis LB 1022 treatment increased the concentration of short-chain fatty acids. Overall, L. lactis LB 1022 significantly modulated AD-like symptoms by altering metabolites and the immune response, illustrating its potential as candidate for use in functional food supplements to alleviate AD.

Keywords

Acknowledgement

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (NRF-2021R1C1C2003223 and NRF-2022R1A2C2012209).

References

  1. Zhu TH, Zhu TR, Tran KA, Sivamani RK, Shi VY. 2018. Epithelial barrier dysfunctions in atopic dermatitis: a skin-gut-lung model linking microbiome alteration and immune dysregulation. Br. J. Dermatol. 179: 570-581.  https://doi.org/10.1111/bjd.16734
  2. Petersen EBM, Skov L, Thyssen JP, Jensen P. 2019. Role of the gut microbiota in atopic dermatitis: A systematic review. Acta Derm. Venereol. 99: 5-11.  https://doi.org/10.2340/00015555-3008
  3. Lee SY, Lee E, Park YM, Hong SJ. 2018. Microbiome in the gut-skin axis in atopic dermatitis. Allergy Asthma Immunol. Res. 10: 354-362.  https://doi.org/10.4168/aair.2018.10.4.354
  4. Yamamoto K, Yokoyama K, Matsukawa T, Kato S, Kato S, Yamada K, et al. 2016. Efficacy of prolonged ingestion of Lactobacillus acidophilus L-92 in adult patients with atopic dermatitis. J. Dairy Sci. 99: 5039-5046.  https://doi.org/10.3168/jds.2015-10605
  5. Reddel S, Del Chierico F, Quagliariello A, Giancristoforo S, Vernocchi P, Russo A, et al. 2019. Gut microbiota profile in children affected by atopic dermatitis and evaluation of intestinal persistence of a probiotic mixture. Sci. Rep. 9: 4996. 
  6. Anania C, Brindisi G, Martinelli I, Bonucci E, D'Orsi M, Ialongo S, et al. 2022. Probiotics function in preventing atopic dermatitis in children. Int. J. Mol. Sci. 23: 5409. 
  7. Song AA, In LLA, Lim SHE, Rahim RA. 2017. A review on Lactococcus lactis: from food to factory. Microb. Cell Fact. 16: 55. 
  8. Ghasemzadeh J, Shekooh Saljughi Z, Akbary P, Hasani M. 2018. Effects of dietary probiotic, Lactococcus lactis "subspecies PTCC 1403" on the growth parameters and survival rate of grey mullet (Mugil cephalus L.) against Lactococcus garvieae bacteria. J. Anim. Environ. Sci. 10: 367-374. 
  9. Yoshida A, Aoki R, Kimoto-Nira H, Kobayashi M, Kawasumi T, Mizumachi K, et al. 2011. Oral administration of live Lactococcus lactis C59 suppresses IgE antibody production in ovalbumin-sensitized mice via the regulation of interleukin-4 production. FEMS Immunol. Med. Microbiol. 61: 315-322.  https://doi.org/10.1111/j.1574-695X.2010.00777.x
  10. Cervantes-Garcia D, Jimenez M, Rivas-Santiago CE, Gallegos-Alcala P, Hernandez-Mercado A, Santoyo-Payan LS, et al. 2021. Lactococcus lactis NZ9000 prevents asthmatic airway inflammation and remodelling in rats through the improvement of intestinal barrier function and systemic TGF-beta production. Int. Arch. Allergy Immunol. 182: 277-291.  https://doi.org/10.1159/000511146
  11. Konkit M, Choi WJ, Kim W. 2015. Alcohol dehydrogenase activity in Lactococcus chungangensis: application in cream cheese to moderate alcohol uptake. J. Dairy Sci. 98: 5974-5982.  https://doi.org/10.3168/jds.2015-9697
  12. Frank JA, Reich CI, Sharma S, Weisbaum JS, Wilson BA, Olsen GJ. 2008. Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl. Environ. Microbiol. 74: 2461-2470.  https://doi.org/10.1128/AEM.02272-07
  13. Robbins KS, Greenspan P, Pegg RB. 2016. Effect of pecan phenolics on the release of nitric oxide from murine RAW 264.7 macrophage cells. Food Chem. 212: 681-687.  https://doi.org/10.1016/j.foodchem.2016.06.018
  14. Mosmann T. 1983. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65: 55-63.  https://doi.org/10.1016/0022-1759(83)90303-4
  15. Kim JH, Kim W. 2022. Alleviation effects of Rubus coreanus Miquel root extract on skin symptoms and inflammation in chronic atopic dermatitis. Food Funct. 13: 2823-2831.  https://doi.org/10.1039/D1FO03580K
  16. Luerce TD, Gomes-Santos AC, Rocha CS, Moreira TG, Cruz DN, Lemos L, et al. 2014. Anti-inflammatory effects of Lactococcus lactis NCDO 2118 during the remission period of chemically induced colitis. Gut Pathog. 6: 33. 
  17. Liu M, Zhang X, Hao Y, Ding J, Shen J, Xue Z, et al. 2019. Protective effects of a novel probiotic strain, Lactococcus lactis ML2018, in colitis: in vivo and in vitro evidence. Food Funct. 10: 1132-1145.  https://doi.org/10.1039/C8FO02301H
  18. Penders J, Stobberingh EE, van den Brandt PA, Thijs C. 2007. The role of the intestinal microbiota in the development of atopic disorders. Allergy 62: 1223-1236.  https://doi.org/10.1111/j.1398-9995.2007.01462.x
  19. Kim HJ, Lee SH, Hong SJ. 2020. Antibiotics-induced dysbiosis of intestinal microbiota aggravates atopic dermatitis in mice by altered short-chain fatty acids. Allergy Asthma Immunol. Res. 12: 137-148.  https://doi.org/10.4168/aair.2020.12.1.137
  20. Choi WJ, Konkit M, Kim Y, Kim MK, Kim W. 2016. Oral administration of Lactococcus chungangensis inhibits 2,4-dinitrochlorobenzene-induced atopic-like dermatitis in NC/Nga mice. J. Dairy Sci. 99: 6889-6901.  https://doi.org/10.3168/jds.2016-11301
  21. Kim JH, Kim K, Kim W. 2019. Cream Cheese-Derived Lactococcus chungangensis CAU 28 modulates the gut microbiota and alleviates atopic dermatitis in BALB/c mice. Sci. Rep. 9: 446. 
  22. Bieber T. 2022. Atopic dermatitis: an expanding therapeutic pipeline for a complex disease. Nat. Rev. Drug Discov. 21: 21-40.  https://doi.org/10.1038/s41573-021-00266-6
  23. Yamanaka K-i, Mizutani H. 2011. The role of cytokines/chemokines in the pathogenesis of atopic dermatitis. Curr. Probl. Dermatol. 41: 80-92.  https://doi.org/10.1159/000323299
  24. Brandt EB, Sivaprasad U. 2011. Th2 cytokines and atopic dermatitis. J. Clin. Cell. Immunol. 2: 110. 
  25. Smits HH, Engering A, van der Kleij D, de Jong EC, Schipper K, van Capel TM, et al. 2005. Selective probiotic bacteria induce IL-10- producing regulatory T cells in vitro by modulating dendritic cell function through dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin. J. Allergy Clin. Immunol. 115: 1260-1267.  https://doi.org/10.1016/j.jaci.2005.03.036
  26. Zhang N, Schroppel B, Lal G, Jakubzick C, Mao X, Chen D, et al. 2009. Regulatory T cells sequentially migrate from inflamed tissues to draining lymph nodes to suppress the alloimmune response. Immunity 30: 458-469.  https://doi.org/10.1016/j.immuni.2008.12.022
  27. Koh A, De Vadder F, Kovatcheva-Datchary P, Backhed F. 2016. From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites. Cell 165: 1332-1345.  https://doi.org/10.1016/j.cell.2016.05.041
  28. Maslowski KM, Vieira AT, Ng A, Kranich J, Sierro F, Yu D, et al. 2009. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461: 1282-1286.  https://doi.org/10.1038/nature08530
  29. Kim JH, Kim K, Kim W. 2021. Gut microbiota restoration through fecal microbiota transplantation: a new atopic dermatitis therapy. Exp. Mol. Med. 53: 907-916. https://doi.org/10.1038/s12276-021-00627-6