DOI QR코드

DOI QR Code

Draft genome sequence of oligosaccharide producing Leuconostoc lactis CCK940 isolated from kimchi in Korea

올리고당을 생산하는 Leuconostoc lactis CCK940 균주의 유전체 염기서열

  • Lee, Sulhee (Department of Food Science and Biotechnology, Gachon University) ;
  • Park, Young-Seo (Department of Food Science and Biotechnology, Gachon University)
  • 이설희 (가천대학교 식품생물공학과) ;
  • 박영서 (가천대학교 식품생물공학과)
  • Received : 2018.09.07
  • Accepted : 2018.10.05
  • Published : 2018.12.31

Abstract

Leuconostoc lactis CCK940, which was isolated from kimchi obtained from a Korean traditional market, produced an oligosaccharide with a degree of polymerization of more than 4. In this study, the draft genome sequence of L. lactis CCK940 was reported by using PacBio 20 kb platform. The genome of this strain was sequenced and the genome assembly revealed 2 contigs. The genome was 1,741,511 base pairs in size with a G + C content of 43.33%, containing 1,698 coding sequences, 12 rRNA genes, and 68 tRNA genes. L. lactis CCK940 contained genes encoding glycosyltransferase, sucrose phosphorylase, maltose phosphorylase, and ${\beta}$-galactosidase which could synthesize oligosaccharide.

한국의 전통시장에서 구입한 김치에서 분리된 Leuconostoc lactis CCK940은 sucrose와 maltose를 이용하여 중합도가 4이상인 올리고당을 생산하였다. L. lactis CCK940의 유전체는 1,741,511 bp의 2개 contig로 구성된 염색체로 조합되었으며 G + C의 비율은 43.33%로 나타났다. 염색체 DNA에서 1,698개의 코딩 유전자, 12개의 rRNA, 68개의 tRNA 유전자가 확인되었다. L. lactis CCK940은 올리고당을 생산할 수 있는 sucrose phosphorylase, maltose phosphorylase, ${\beta}$-galactosidase 등의 glucosyltransferase 생합성 유전자들을 지니고 있었다.

Keywords

Table 1. General genomic features of L. lactis CCK940

MSMHBQ_2018_v54n4_445_t0001.png 이미지

References

  1. Ashelford KE, Chuzhanova NA, Fry JC, Jones AJ, and Weightman AJ. 2005. At least 1 in 20 16S rRNA sequence records currently held in public repositories is estimated to contain substantial anomalies. Appl. Environ. Microbiol. 71, 7724-7736. https://doi.org/10.1128/AEM.71.12.7724-7736.2005
  2. Besemer J, Lomsadze A, and Borodovsky M. 2001. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implicatins for finding sequence motifs in regulatory regions. Nucleic Acids Res. 29, 2607-2618. https://doi.org/10.1093/nar/29.12.2607
  3. Grissa I, Vergnaud G, and Pourcel C. 2007. CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res. 35, 52-57.
  4. Hemme D. 2012. Leuconostoc and its use in dairy technology, pp. 73-107. In Hui YH and Evranuz EO. (eds.), Handbook of animalbased fermented food and beverage technology, 2nd ed. Taylor & Francis Group, Boca Raton, Florida, USA.
  5. Lee S and Park YS. 2017. Oligosaccharide production by Leuconostoc lactis CCK940 which has glucansucrase activity. Food Eng. Prog. 21, 383-390. https://doi.org/10.13050/foodengprog.2017.21.4.383
  6. Moon JS, Choi HS, Shin SY, Noh SJ, Jeon CO, and Han NS. 2015. Genome sequence analysis of potential probiotic strain Leuconostoc lactis EFEL005 isolated from kimchi. J. Microbiol. 53, 337-342. https://doi.org/10.1007/s12275-015-5090-8
  7. O'Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, Rajput B, Robbertse B, Smith-White B, Ako-Adjei D, et al. 2016. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 4, 733-745.
  8. Tatusov RL, Galperin MY, Natale DA, and Koonin EV. 2000. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 28, 33-36. https://doi.org/10.1093/nar/28.1.33
  9. Vancanneyt M, Zamfir M, De Wachter M, Cleenwerck I, Hoste B, Rossi F, Dellaglio F, De Vuyst L, and Swings J. 2006. Reclassification of Leuconostoc argentinum as a later synonym of Leuconostoc lactis. Int. J. Syst. Evol. Microbiol. 56, 213-216. https://doi.org/10.1099/ijs.0.63898-0
  10. van Tieghem P. 1878. Sur la gomme du sucrerie (Leuconostoc mesenteroides). Ann. Sci. Nat. Bot. 7, 180-203.

Cited by

  1. Lactic Acid Bacterial Production of Exopolysaccharides from Fruit and Vegetables and Associated Benefits vol.6, pp.4, 2020, https://doi.org/10.3390/fermentation6040115