• 제목/요약/키워드: L-arabinose

검색결과 162건 처리시간 0.021초

Synergistic Action Modes of Arabinan Degradation by Exo- and Endo-Arabinosyl Hydrolases

  • Park, Jung-Mi;Jang, Myoung-Uoon;Oh, Gyo Won;Lee, Eun-Hee;Kang, Jung-Hyun;Song, Yeong-Bok;Han, Nam Soo;Kim, Tae-Jip
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권2호
    • /
    • pp.227-233
    • /
    • 2015
  • Two recombinant arabinosyl hydrolases, α-L-arabinofuranosidase from Geobacillus sp. KCTC 3012 (GAFase) and endo-(1,5)-α-L-arabinanase from Bacillus licheniformis DSM13 (BlABNase), were overexpressed in Escherichia coli, and their synergistic modes of action against sugar beet (branched) arabinan were investigated. Whereas GAFase hydrolyzed 35.9% of L-arabinose residues from sugar beet (branched) arabinan, endo-action of BlABNase released only 0.5% of L-arabinose owing to its extremely low accessibility towards branched arabinan. Interestingly, the simultaneous treatment of GAFase and BlABNase could liberate approximately 91.2% of L-arabinose from arabinan, which was significantly higher than any single exo-enzyme treatment (35.9%) or even stepwise exo- after endo-enzyme treatment (75.5%). Based on their unique modes of action, both exo- and endo-arabinosyl hydrolases can work in concert to catalyze the hydrolysis of arabinan to L-arabinose. At the early stage in arabinan degradation, exo-acting GAFase could remove the terminal arabinose branches to generate debranched arabinan, which could be successively hydrolyzed into arabinooligosaccharides via the endo-action of BlABNase. At the final stage, the simultaneous actions of exo- and endo-hydrolases could synergistically accelerate the L-arabinose production with high conversion yield.

Comparative Analysis of Tagatose Productivity of Immobilized L-Arabinose Isomerase Expressed in Escherichia coli and Bacillus subtilis

  • Cheon, Ji-Na;Kim, Seong-Bo;Park, Seong-Won;Han, Jong-Kwon;Kim, Pil
    • Food Science and Biotechnology
    • /
    • 제17권3호
    • /
    • pp.655-658
    • /
    • 2008
  • Although arabinose isomerase (E.C. 5.3.1.4), a commercial enzyme for edible tagatose bioconversion, can be expressed in an Escherichia coli system, this expression system might leave noxious by-products in food. To develop an eligible tagatose bioconversion with food-safe system, we compared the tagatose production activity of immobilized arabinose isomerase expressed in Bacillus subtilis (a host generally recognized as safe) with that of the enzyme expressed in E. coli. A 48% increase in tagatose production (4.3 g tagatose/L at $69.4\;mg/L{\cdot}hr$) was found using the B. subtilis-expressed immobilized enzyme system, compared to the E. coli-expressed enzyme system (2.9 g tagatose/L). The increased productivity with safety of the B. subtilis-expressed arabinose isomerase suggests that it is a more eligible candidate for commercial tagatose production.

Enhancement of Biocontrol Activity of Antagonistic Chryseobacterium Strain KJ1R5 by Adding Carbon Sources against Phytophthora capsici

  • Kim, Yu-Seok;Jang, Bo-Ra;Chung, Ill-Min;Sang, Mee-Kyung;Ku, Han-Mo;Kim, Ki-Deok;Chun, Se-Chul
    • The Plant Pathology Journal
    • /
    • 제24권2호
    • /
    • pp.164-170
    • /
    • 2008
  • Carbon utilization by Chryseobacterium strain KJ1R5 was studied to enhance its biocontrol activity against Phytophthora capsid. Chryseobacterium strain KJ1R5 has previously been shown to control Phytophthora blight of pepper (Capsicum annuum L.). Strain KJ1R5 could utilize carbon sources such as L-arabinose, D-cellobiose, ${\beta}-lactose$ and D-galactose well. P. capsici could utilize D-glucose well, showing the absorbencies ranged from 0.577 to 0.767 at 600nm. When 2% L-arabinose, which could only be utilized by the bio-control strain KJ1R5, was amended into the bacterial suspension, the efficacy of biological control increased. Among the amendments of various carbon sources into bacterial suspension, L-arabinose and D-(+)-glucose significantly enhanced biological control activity, resulting in a reduction of disease incidence to 6.9%, compared to 21.9% for the strain KJ1R5 alone and 81.3% for P. capsici inoculation alone, indicating that amendment with specific carbon sources could increase the biological control activity.

L-리보스 생산을 위한 L-아라비노스의 에피머반응 (Epimerization of L-Arabinose for Producing L-Ribose)

  • 전영주;송성문;이창수;김인호
    • Korean Chemical Engineering Research
    • /
    • 제49권5호
    • /
    • pp.628-632
    • /
    • 2011
  • L-리보스는 항바이러스 약의 출발물질로 근래 관심의 대상이다. 이 물질은 에피머 반응에 의해 L-아라비노스로 부터 얻을 수 있다. 몰리브덴 산화물이나 몰리브덴산 촉매 그리고 메탄올/물 용액에서 에피머 반응을 수행하였다. 반응 온도, 메탄올 분율, 촉매종류를 선정하여 최적 반응을 찾고자 하였다. 이온교환크로마토그래피를 이용하여 에피머 반응물을 분리하였고 L-리보스 HPLC 크로마토그램에서 반응수율을 계산하였다. Sodex 이온교환 HPLC 칼럼과 Phenomenex $NH_2$ HPLC 칼럼을 분석의 편의성 면에서 비교하였다. 20% 메탄올, $60^{\circ}C$, 그리고 40 g/L 몰리브덴산 조건에서 21% 최대수율을 얻었다.

Modulation of the Tendency Towards Inclusion Body Formation of Recombinant Protein by the Addition of Glucose in the araBAD Promoter System of Escherichia coli

  • Lee, You-Jin;Jung, Kyung-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권11호
    • /
    • pp.1898-1903
    • /
    • 2007
  • We attempted to modulate the overall protein expression rate through the addition of a repressor against the araBAD promoter system of Escherichia coli, in which glucose was used as a repressor. Therefore, 0.5% L-arabinose was initially contained as an inducer in culture medium, and either 2% glucose or 2% glycerol was used as a carbon source, and it was found that the expression of recombinant interferon-${\alpha}$ could be observed at the beginning of the batch culture when glycerol was used as a carbon source. However, when glucose was used, the initiation of recombinant interferon-${\alpha}$ expression was delayed compared with that when glycerol was used. Furthermore, when the addition of 0.5% glucose was carried out once or twice after 0.5% L-arabinose induction during DO-stat fed-batch culture, the distributions of soluble and insoluble recombinant interferon-${\alpha}$ were modulated. When glucose was not added after the induction of L-arabinose, all of the expressed recombinant interferon-${\alpha}$ formed an inclusion body during the later half of culturing. However, when glucose was added after induction, the expressed recombinant interferon-${\alpha}$ did not all form an inclusion body, and about half of the total recombinant interferon-${\alpha}$ was expressed in a soluble form. It was deduced that the addition of glucose after the induction of L-arabinose might lower the cAMP level, and thus, CAP (catabolite activator protein) might not be activated. The transcription rate of recombinant interferon-${\alpha}$ in the araBAD promoter system might be delayed by the partial repression. This inhibition of the transcription rate probably resulted in more soluble interferon-${\alpha}$ expression caused by the reduction of the protein synthesis rate.

E. coli에서 GroEL/ES chaperone 공발현에 의한 활성형 cyclodextrin glucanotransferase의 생산 증대 (Improvement of production of active cyclodextrin glucanotransferase by coexpression GroEL/ES chaperons in E. coli)

  • 권미정;박소림;김병우;김성구;남수완
    • 생명과학회지
    • /
    • 제12권6호
    • /
    • pp.688-693
    • /
    • 2002
  • Chaperone 분자는 세포 내에서 새로 합성된 polypeptides의 misfolding을 보호하는 역할을 가진다. 이런 chaperone 분자와의 공발현은 활성형 재조합 단백질의 생산을 증가를 기대할 수 있다. 본 연구에서는 E. cozi에서 B. macerans 유래 cyclodextrin glucanotransferase (CGTase)의 활성형 생산에 GroEL/ES chaperone과의 공발현의 효과에 대해 조사하였다. cgt와 groEL/ES 유전자출 발현하는 pTCGT1과 pGro7은 각각 T7 promoter와 araB promoter에 의해 조절되고 이들을 E. coli cell에 co-transformation시켰다. 재조합 E. coli에서 IPTG와 L-arabinose의 최적 농도를 결정하기 위해 행한 결과 1 mM IPTG, 0.3 mg L-arabinose/$m\ell$에서 가장 높은 CGTase 활성을 나타내었다. 그리고 tube에서는 L-arabinose와 IPTG를 각각 0.4~0.5 $OD_{600}$과 0.8~l.0 $OD_{600}$에서 첨가하였을 때 활성형 CGTase의 생산이 증가되었다. GroEL/ES 공발현 조건에서는 가용성 CGTase 활성이 0.7~0.73 unit/$m\ell$로 단독 발현의 0.36~0.56 unit/$m\ell$에 비해 약 1.5 배 정도 증가함을 알 수 있었다. SDS-PAGE 분석에서는 GroEL/ES 공발현 조건에서 총 CGTase의 33.6%정도가 가용성 형태로 생산됨을 알 수 있었다.

Metabolic Engineering of Nonmevalonate Pathway in Escherichia coli Enhances Lycopene Production

  • Kim, Seon-Won;J.D. Keasling
    • 한국미생물생명공학회:학술대회논문집
    • /
    • 한국미생물생명공학회 2001년도 Proceedings of 2001 International Symposium
    • /
    • pp.141-145
    • /
    • 2001
  • Isopentenyl diphosphate (IPP) is the common, five-carbon building block in the biosynthesis of all carotenoids. IPP in Escherichia coli is synthesized through the non-mevalonate pathway. The first reaction of IPP biosynthesis in E. coli is the formation of l-deoxy-D-xylulose-5-phosphate (DXP), catalyzed by DXP synthase and encoded by dxs. The second reaction in the pathway is the reduction of DXP to 2-C-methyl-D-erythritol-4-phosphate, catalyzed by DXP reductoisomerase and encoded by dxr. To determine if one or more of the reactions in the non-mevalonate pathway controlled flux to IPP, dxs and dxr were placed on several expression vectors under the control of three different promoters and transformed into three E. coli strains (DH5$\alpha$, XL1-Blue, and JMl0l) that had been engineered to produce lycopene. Lycopene production was improved significantly in strains transformed with the dxs expression vectors. When the dxs gene was expressed from the arabinose-inducible araBAD promoter ( $P_{BAD}$) on a medium-copy plasmid, lycopene production was 2-fold higher than when dxs was expressed from the IPTG-inducible trc and lac promoters ( $P_{trc}$ and $P_{lac}$, respectively) on medium-copy and high-copy plasmids. Given the low final densities of cells expressing dxs from IPTG-inducible promoters, the low lycopene production was probably due to the metabolic burden of plasmid maintenance and an excessive drain of central metabolic intermediates. At arabinose concentrations between 0 and 1.33 roM, cells expressing both dxs and dxr from $P_{BAD}$ on a medium-copy plasmid produced 1.4 - 2.0 times more lycopene than cells expressing dxs only. However, at higher arabinose concentrations lycopene . production in cells expressing both dxs and dxr was lower than in cells expressing dxs only. A comparison of the three E. coli strains transformed with the arabinose-inducible dxs on a medium-copy plasmid revealed that lycopene production was highest in XLI-Blue.LI-Blue.

  • PDF

Synergic Effects among Endo-xylanase, $\beta$-Xylosidase, and $\alpha$-L-Arabinofuranosidase from Bacillus stearothermophilus

  • Suh, Jung Han;Ssang Goo Cho;Yong Jin Choi
    • Journal of Microbiology and Biotechnology
    • /
    • 제6권3호
    • /
    • pp.179-183
    • /
    • 1996
  • Synergism among endo-xylanase, $\beta$-xylosidase, and $\alpha$-L-arabinofuranosidase from Bacillus stearothermophilus upon xylan hydrolysis was investigated by using birchwood, oat spelt, and arabinoxylan as substrates. Endo-xylanase and $\beta$-xylosidase showed the cooperative action on all three substrates tested, revealing the fact that $\beta$-xylosidase assists endo-xylanase action in xylan hydrolysis by relieving the endproduct inhibition upon endo-xylanase conferred by xylooligomers. $\alpha$-L-Arabinofuranosidase also exhibited synergic effects with endo-xylanase and $\beta$-xylosidase on oat spelt and arabinoxylan, which contained significant amounts of arabinose side chains, whereas no synergism was detected on birchwood xylan which had only trace amounts of the side chain. Thus, the hydrolysis of xylan containing arabinose side chains required $\alpha$-L-arabinofuranosidase as well as endo-xylanase and $\beta$-xylosidase for the better hydrolysis of the substrates, and these enzymes work cooperatively in order to maximize the extent and rate of xylan hydrolysis.

  • PDF

Plasmid Stability in Long-Term hG-CSF Production Using $_{L}-Arbinose$ Promoter System of Escherichia coli

  • Choi, Seung-Jin;Park, Doo-Hong;Chung, Soo-Il;Jung, Kyung-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • 제10권3호
    • /
    • pp.321-326
    • /
    • 2000
  • To examine the feasibility of the long-term production of the human granulocyte colony stimulating factor (hG-CSF) using the $_{L}-arabinose$ promoter system of Escherichia coli, flask relay culture and cyclic fed-batch culture were performed. In the flask relay culture, it was found that the pismid was maintained stably up to about 170 generations in an uninduced condition, whereby the cells could also maintain the capability of expressing hG-CSF expression were maintained stably up to at least 100 generations. In contrast, in the cyclid fed-batch culture, segregational plasmid instability was observed within about 4 generations after induction, even though the cell growth and hG-CSF production reached their maximum balues, 78.0 g/l of dry cell weight and 7.0 g/l of hG-CSF, respectively. It would appear that, when compared to the flask relay culture, the high-cell density and high-level expression of hG-CSF in the cyclic fed-batch cultrure led to the segregational plasmid instability; in other words, a severe metabolic burden existe on the cells due to the high-level expression of hG-CSF. Accordingly, based on these long-term cultures, the segregational and structural plasmid instability was observed and a strategy to overcome such problems could be designed.

  • PDF