II -51

Bacillus subtilis에서 L-arabinose isomerase의 클로닝 및 특성규명

건국대학교: 김진하, 포난디 프라부, 마니쉬 쿠마 티와리, 마리무투 제아 ,장예왕, 김상용 ,이정걸*

Cloning and characterization of L-arabinose isomerase from Bacillus subtilis

BioNgene Co. Ltd.¹ ,Department of Bioscience and Biotechnology², Department of Chemical Engineering³, Institute of Biomedical Science and Technology⁴, Konkuk University,

Jin-Ha Kim¹, Ponnandy Prabhu², Manish Kumar Tiwari³, Marimuthu Jeya³, Ye-Wang Zhang³, Sang-Yong Kim¹, Jung-Kul Lee^{3,4}*

Objectives

To screen for an enzyme L-arabinose isomerase which can isomerize L-arabinose to L-ribulose with high turnover rate in order to produce more amount of L-ribulose, a rare sugar.

Materials and Methods

Bacillus subtilis str. 168 was obtained from Korea Research Institute of Bioscience and Biotechnology, South Korea. Protein concentrations were determined by the Bradford method using Bovine serum albumin as a standard protein. The molecular mass of the native enzyme was determined by gel filtration chromatography. The generated L-ribulose was determined by cysteine carbazole sulfuric-acid method and the absorbance was measured at 560 nm. Kinetic parameters of BSAI were determined in 100 mM phosphate buffer (pH 7.5), 1 mM Mn²⁺ and 1-600 mM substrate (L-arabinose).

(Corresponding author): 이정걸 E-mail: jkrhee@konkuk.ac.kr Tel: 02-450-3505

Results

The *araA* gene encoding an L-AI has been cloned from B. subtilis and overexpressed in soluble form. Biochemical and kinetic properties of L-arabinose isomerase from Bacillus subtilis (BSAI) was characterized completely. Addition of Mn2+ increased the activity by 42 fold and appeared to be required for catalytic activity. BSAI is highly specific towards the substrate L-arabinose and exhibits the highest k_{cat} ever reported among L-AIs. Compared to other known L-AIs, BSAI catalyzes the isomerization of L-arabinose withthe highest turnover rate ever reported.

시험성적

Bacteria	M_r , subunit	Optimum	k_{cat}	$k_{ m cat}/K_{ m m}$	References
	(kDa)	pН	(min ⁻¹)	$(\min^{-1} mM^{-1})$	
E. coli	55	8	NR	NR	Yoon et al.(2003)
Bacillus halodurans	57	7.5 - 8	1864	51	Lee et al.(2005)
Lactobacillus plantarum	55	7.5	667	15	Chouayekh et al.(2007)
G. stearothermophilus	57	7 - 7.5	4100	61	Kim et al. (2006)
G. thermodenitrificans	55	8.5	6960	48	Kim and Oh(2005)
Bacillus stearothermophilus	56	7.5	1988	71	Rhimi (2006)
Thermatoga neopolitana	56	7.0	6740	58	Kim et al.(2002)
Thermatoga maritima	57	7.5	2340	75	Lee et al.(2004)
Bacillus subtilis	56	7.5	14504	121	This study

Table 1. Biochemical and kinetic properties of L-AIs from various organisms