Browse > Article

Modulation of the Tendency Towards Inclusion Body Formation of Recombinant Protein by the Addition of Glucose in the araBAD Promoter System of Escherichia coli  

Lee, You-Jin (Division of Food and Biotechnology, Chungju National University)
Jung, Kyung-Hwan (Division of Food and Biotechnology, Chungju National University)
Publication Information
Journal of Microbiology and Biotechnology / v.17, no.11, 2007 , pp. 1898-1903 More about this Journal
Abstract
We attempted to modulate the overall protein expression rate through the addition of a repressor against the araBAD promoter system of Escherichia coli, in which glucose was used as a repressor. Therefore, 0.5% L-arabinose was initially contained as an inducer in culture medium, and either 2% glucose or 2% glycerol was used as a carbon source, and it was found that the expression of recombinant interferon-${\alpha}$ could be observed at the beginning of the batch culture when glycerol was used as a carbon source. However, when glucose was used, the initiation of recombinant interferon-${\alpha}$ expression was delayed compared with that when glycerol was used. Furthermore, when the addition of 0.5% glucose was carried out once or twice after 0.5% L-arabinose induction during DO-stat fed-batch culture, the distributions of soluble and insoluble recombinant interferon-${\alpha}$ were modulated. When glucose was not added after the induction of L-arabinose, all of the expressed recombinant interferon-${\alpha}$ formed an inclusion body during the later half of culturing. However, when glucose was added after induction, the expressed recombinant interferon-${\alpha}$ did not all form an inclusion body, and about half of the total recombinant interferon-${\alpha}$ was expressed in a soluble form. It was deduced that the addition of glucose after the induction of L-arabinose might lower the cAMP level, and thus, CAP (catabolite activator protein) might not be activated. The transcription rate of recombinant interferon-${\alpha}$ in the araBAD promoter system might be delayed by the partial repression. This inhibition of the transcription rate probably resulted in more soluble interferon-${\alpha}$ expression caused by the reduction of the protein synthesis rate.
Keywords
Modulation of transcription; glucose; araBAD promoter; soluble protein expression;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 7  (Related Records In Web of Science)
연도 인용수 순위
1 Hoffmann, F., J. van den Heuvel, N. Zidek, and U. Rinas. 2004. Minimizing inclusion body formation during recombinant protein production in Escherichia coli at bench and pilot plant scale. Enzyme Microb. Technol. 34: 235-241   DOI   ScienceOn
2 Ishizuka, H., A. Hanamura, T. Inada, and H. Aiba. 1994. Mechanism of the down-regulation of cAMP receptor protein by glucose in Escherichia coli: Role of autoregulation ofthe crp gene. EMBO J 13: 3077- 3082
3 Khalilzadeh, R., S. A. Shojaosadati, N. Maghsoudi, J. Mohammadian-Mosaabadi, M. R. Mohammadi, A. Bahrami, N. Maleksabet, M. A. Nassiri-Khalilli, M. Ebrahimi, and H. Naderimanesh. 2004. Process development for production of recombinant human interferon-y expressed in Escherichia coli. J Ind. Microbial. Biotechnol. 31: 63-69   DOI   ScienceOn
4 Lim, H.-K., K.-H. Jung, D.-H. Park, and S.-I. Chung. 2000. Production characteristics of interferon-a using L-arabinose promoter system in a high-cell-density culture. Appl. Microbiol. Biotechnol. 53: 201-208   DOI   ScienceOn
5 Manderson, D., R. Dempster, and Y. Chisti. 2006. Production of an active recombinant Aspin antigen in Escherichia coli for identifying animals resistant to nematode infection. Enzyme Microb. Technol. 38: 591-598   DOI   ScienceOn
6 Sanden, A. M., M. Bostrom, K. Markland, and G Larsson. 2005. Solubility and proteolysis of the Zb-MalE and ZbMalE31 proteins during overproduction in Escherichia coli. Biotechnol. Bioeng. 90: 239-247   DOI   ScienceOn
7 Schleif, R. 2000. Regulation of the L-arabinose operon of Escherichia coli. Trends Genet. 16: 559-565   DOI   ScienceOn
8 Shin, D., S. Lee, Y. Shin, and S. Ryu. 2006. Identification of a novel genetic locus affecting ptsG expression in Escherichia coli. J Microbiol. Biotechnol. 16: 795-798   과학기술학회마을
9 Tyler, B., W. F.Loomis Jr., and B. Magasanik. 1967. Transient repression ofthe lac operon. J. Bacteriol. 94: 2001-2011
10 Zhang, X. and R. Schleif. 1998. Catabolite gene activator protein mutations affecting activity ofthe araBAD promoter. J Bacteriol. 180: 195-200
11 Park, J.-v, J.-S. Park, J.-H. Kim, S.-J. Jeong, J. Y. Chun, J.-H. Lee, and J.-H. Kim. 2005. Characterization of the catabolite control protein (CcpA) gene from Leuconostoc mesenteroides SYI. J. Microbiol. Biotechnol. 15: 749-755   과학기술학회마을
12 Gang, 1. B., H.-1. Chung, G-G Park, Y-S. Park, and S.-J. Choi. 2005. Stability and structural change of cAMP receptor protein at low and high cAMP concentrations. J Microbial. Biotechnol. 15: 1392-1396   과학기술학회마을
13 Wycuff, D. R. and K. S. Matthews. 2000. Generation of an AraC-araBAD promoter-regulated T7 expression system. Anal. Biochem. 277: 67-73   DOI   ScienceOn
14 Panda, A. K. 2003. Bioprocessing of therapeutic proteins from the inclusion bodies of Escherichia coli. Adv. Biochem. Eng. Biotechnol. 85: 43-93
15 Bettenbrock, K., S. Fischer, A. Kremling, K. Jahreis, T. Sauter, and E.-D. Gilles. 2006. A quantitative approach to catabolite repression in Escherichia coli. J Bioi. Chern. 281: 2578-2584   DOI
16 Paigen, K. 1966. Phenomenon of transient repression in Escherichia coli. J. Bacterial. 91: 1201-1209
17 Newman, J. R. and C. Fuqua. 1999. Broad-host-range expression vectors that carry the L-arabinose-inducible Escherichia coli araBAD promoter and the araC regulator. Gene 227: 197-203   DOI   ScienceOn
18 Tyler, B. and B. Magasanik. 1970. Physiological basis of transient repression of catabolite enzymes in Escherichia coli. J. Bacteriol. 102: 411-422
19 Patkar, A., N. Vijayasankaran, D. W.Urry, and F. Srienc.2002. Flow cytometry as a useful tool for process development: Rapid evaluation of expression systems. J Biotechnol. 93: 217-229   DOI   ScienceOn
20 Lichenstein, H. S., E. P. Hamilton, and N. Lee. 1987. Repression and catabolite gene activation in the araBAD operon. J Bacteriol. 169: 811-822   DOI
21 Schmidt, M., K. R. Babu, N. Khanna, S. Marten, and U. Rinas. 1999. Temperature-induced production of recombinant human insulin in high-cell density cultures of recombinant Escherichia coli. J. Biotechnol. 68: 71-83   DOI   ScienceOn
22 Panda, A. K., R. H. Khan, K. B. C. Appa Rao, and S. M. Totey. 1999. Kinetics of inclusion body production in batch and high cell density fed-batch culture of Escherichia coli expressing ovine growth hormone. J Biotechnol. 75: 161-172   DOI   ScienceOn
23 Holtman, C. K., A. C. Pawlyk, N. D. Meadow, and D. W. Pettigrew. 2001. Reverse genetics of Escherichia coli glycerol kinase allosteric regulation and glucose control of glycerol utilization in vivo. J Bacterial. 183: 3336-3344   DOI   ScienceOn
24 Gendron, R. P. and D. E. Sheppard. 1974. Mutations in the L-arabinose operon of Escherichia coli B/r that results in hypersensitivity to catabolite repression. J Bacterial. 117: 417-421
25 Hideaki, T., T. Inada, T. Kunimura, and H. Aiba. 1995. Glucose lowers $CRP^{star}$ levels resulting in repression of the lac operon in cells lacking cAMP. Mol. Microbial. 17: 251258
26 Lim, H.-K., S.-U. Lee, S.-I. Chung, K.-H. Jung, and J.-H. Seo. 2004. Induction of the T7 promoter using lactose for production of recombinant plasminogen kringle 1-3 in Escherichia coli. J Microbiol. Biotechnol. 14: 225-230
27 Sorensen, H. P.and K. K. Mortensen. 2005. Advanced genetic strategies for recombinant protein expression in Escherichia coli. J Biotechnol. 115: 113-128   DOI   ScienceOn
28 Bostrom, M., K. Markland, A. M. Sanden, M. Hedhammar, S. Hober, and G Larsson. 2005. Effect of substrate feed rate on recombinant protein secretion, degradation and inclusion body formation in Escherichia coli. Appl. Microbial. Biotechnol. 68: 82-90   DOI   ScienceOn
29 Johnson, C. M. and R. T. Schleif. 1995. In vivo induction kinetics of the arabinose promoters in Escherichia coli. J. Bacterial. 177: 3438-3442   DOI
30 Guzman, L.-M., D. Belin, M. J. Carson, and J. Beckwith. 1995. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J. Bacterial. 177: 4121-4130   DOI
31 Ishizuka, H., A. Hanamura, T. Kunimura, and H. Aiba. 1993. A lowered concentration of cAMP receptor protein caused by glucose is an important determinant for catabolite repression in Escherichia coli. Mol. Microbial. 10: 341-350   DOI   ScienceOn