Comparative Analysis of Tagatose Productivity of Immobilized L-Arabinose Isomerase Expressed in Escherichia coli and Bacillus subtilis

  • Cheon, Ji-Na (Department of Biotechnology, Catholic University of Korea) ;
  • Kim, Seong-Bo (Food Ingredient Center, CJ Foods R&D, CJ Corp.) ;
  • Park, Seong-Won (Food Ingredient Center, CJ Foods R&D, CJ Corp.) ;
  • Han, Jong-Kwon (Food Ingredient Center, CJ Foods R&D, CJ Corp.) ;
  • Kim, Pil (Department of Biotechnology, Catholic University of Korea)
  • Published : 2008.06.30

Abstract

Although arabinose isomerase (E.C. 5.3.1.4), a commercial enzyme for edible tagatose bioconversion, can be expressed in an Escherichia coli system, this expression system might leave noxious by-products in food. To develop an eligible tagatose bioconversion with food-safe system, we compared the tagatose production activity of immobilized arabinose isomerase expressed in Bacillus subtilis (a host generally recognized as safe) with that of the enzyme expressed in E. coli. A 48% increase in tagatose production (4.3 g tagatose/L at $69.4\;mg/L{\cdot}hr$) was found using the B. subtilis-expressed immobilized enzyme system, compared to the E. coli-expressed enzyme system (2.9 g tagatose/L). The increased productivity with safety of the B. subtilis-expressed arabinose isomerase suggests that it is a more eligible candidate for commercial tagatose production.

Keywords

References

  1. Kim P. Current studies on biological tagatose production using Larabinose isomerase: A review and future perspective. Appl. Microbiol. Biot. 65: 243-249 (2004)
  2. Levin GV. Tagatose, the new GRAS sweetener and health product. J. Med. Food. 5: 23-36 (2002) https://doi.org/10.1089/109662002753723197
  3. Wong D. Sweetener determined safe in drugs, mouthwashes, and toothpastes. Dent. Today 19: 32, 34-35 (2000)
  4. Cheetham PSJ, Wootton AN. Bioconversion of D-galactose into Dtagatose. Enzyme Microb. Tech. 15: 105-108 (1993) https://doi.org/10.1016/0141-0229(93)90032-W
  5. Roh HJ, Yoon SH, Kim P. Preparation of L-arabinose isomerase originated from Escherichia coli as a biocatalyst for D-tagatose production. Biotechnol. Lett. 22: 197-199 (2000) https://doi.org/10.1023/A:1005689030717
  6. Kim BC, Lee YH, Lee HS, Lee DW, Choe EA, Pyun YR. Cloning, expression, and characterization of L-arabinose isomerase from Thermotoga neapolitana: Bioconversion of D-galactose to D-tagatose using the enzyme. FEMS Microbiol. Lett. 212: 121-126 (2002)
  7. Hong YH, Lee DW, Lee SJ, Choe EA, Kim SB, Lee YH, Cheigh CI, Pyun YR. Production of D-tagatose at high temperatures using immobilized Escherichia coli cells expressing L-arabinose isomerase from Thermotoga neapolitana. Biotechnol. Lett. 29: 569-574 (2007) https://doi.org/10.1007/s10529-006-9277-2
  8. Kim P, Yoon SH, Seo MJ, Oh DK, Choi JH. Improvement of tagatose conversion rate by genetic evolution of thermostable galactose isomerase. Biotechnol. Appl. Bioc. 34: 99-102 (2001) https://doi.org/10.1042/BA20010025
  9. Lee SJ, Lee DW, Choe EA, Hong YH, Kim SB, Kim BC, Pyun YR. Characterization of a thermoacidophilic L-arabinose isomerase from Alicyclobacillus acidocaldarius: Role of Lys-269 in pH optimum. Appl. Environ. Microb. 71: 7888-7896. (2005) https://doi.org/10.1128/AEM.71.12.7888-7896.2005
  10. Oh DK, Oh HJ, Kim HJ, Cheon J, Kim P. Modification of optimal pH in L-arabinose isomerase from Geobacillus stearothermophilus for D-galactose isomerization. J. Mol. Catal. B-Enzym. 43: 108-112 (2006) https://doi.org/10.1016/j.molcatb.2006.06.015
  11. Kim HJ, Ryu SA, Kim P, Oh DK. A feasible enzymatic process for D-tagatose production by an immobilized thermostable L-arabinose isomerase in a packed-bed bioreactor. Biotechnol. Progr. 19: 400- 404 (2003) https://doi.org/10.1021/bp025675f
  12. Kim HJ, Kim JH, Oh HJ, Oh DK. Characterization of a mutated Geobacillus stearothermophilus L-arabinose isomerase that increases the production rate of D-tagatose. J. Appl. Microbiol. 101: 213-221 (2006) https://doi.org/10.1111/j.1365-2672.2006.02975.x
  13. Salminen S, von Wright A, Morelli L, Marteau P, Brassart D, de Vos WM, Fonden R, Saxelin M, Collins K, Mogensen G, Birkeland SE, Mattila-Sandholm T. Demonstration of safety of probiotics-A review. Int. J. Food Microbiol. 44: 93-106 (1998) https://doi.org/10.1016/S0168-1605(98)00128-7
  14. Burdock GA, Carabin IG. Generally recognized as safe (GRAS): History and description. Toxicol. Lett. 150: 3-18 (2004) https://doi.org/10.1016/j.toxlet.2003.07.004
  15. Schallmey M, Singh A, Ward OP. Developments in the use of Bacillus species for industrial production. Can. J. Microbiol. 50: 1- 17 (2004) https://doi.org/10.1139/w03-076
  16. Cheon J, Kim SB, Park SW, Han JK, Kim P. Characterization of Larabinose isomerase in Bacillus subtilis, a GRAS host, for edible tagatose production. Food Biotechnol. 22: in press (2008)
  17. Cheon J. L-Arabinose isomerase expression systems in GRAS host for safety of D-tagatose production. MS thesis, Catholic University of Korea, Seoul, Korea (2007)
  18. Jia XQ, Mo EK, Sun BS, Gu LJ, Fang ZM, Sung CK. Solid-state fermentation for production of monacolin K on soybean by Monascus ruber GM011. Food Sci. Biotechnol. 15: 814-816 (2006)
  19. Oh SJ, Heo HJ, Park DJ, Lee SJ, Imm JY. Effect of encapsulated bacteriocin on acid production and growth of starter cultures in yoghurt. Food Sci. Biotechnol. 15: 902-907 (2006)
  20. Do JR, Kim KJ, Kim HK, Kim YM, Park YB, Lee YB, Kim SB. Optimization of enzymatic hydrolysis conditions for production of angiotensin-1 converting enzyme inhibitory peptide from casein. Food Sci. Biotechnol. 16: 565-571 (2007)
  21. Dische Z, Borenfreund E. A new spectrophotometric method for the detection and determination of keto sugars and trioses. J. Biol. Chem. 192: 583-587 (1951)