• Title/Summary/Keyword: Kyungpook Mathematical Journal

Search Result 2,714, Processing Time 0.028 seconds

The comparison on the learning effect of low-achievers in mathematics using Blended e-learning and Personalized system of instruction (수학 성취도가 낮은 학생의 보충 지도 과정에서 블렌디드 e-러닝과 개별화 교수체제의 효과 비교 분석)

  • Song, Dagyeom;Lee, Bongju
    • The Mathematical Education
    • /
    • v.56 no.2
    • /
    • pp.161-175
    • /
    • 2017
  • The purpose of this study is to compare and analyze the impact on low-achievers in mathematics who studied mathematics using Blended e-learning and Personalized system of instruction after school. Blended e-learning is defined as the management of e-learning using the e-study run by the education office in local. Personalized system of instruction was proceeded as follows; (1) all students are given a syllabicated learning task and a study guide, (2) students study the material autonomously according to their own pace for a certain period of time, (3) the teacher strengthens the students' motivation through grading and feedback after students study a subject and solve the evaluation problem. The learning materials for Personalized system of instruction are re-edited the offline education contents provided by the blended e-learning to the level of students. The 118 $7^{th}$ grade students from the D middle school participated in this study. The results were verified by achievement tests before and after the study, as well as survey regarding their attitude toward mathematics. The results are as follows. First, Blended e-learning has more positive impacts than Personalized system of instruction in mathematics achievement. Second, there was no difference in mathematics achievement according to their self-directed learning between Blended e-learning and Personalized system of instruction. Third, both types utilizing Blended e-learning and Personalized system of instruction have positive effect on attitude toward mathematics, and there is not their difference between two methods of teaching and learning mathematics.

G-REGULAR SEMIGROUPS

  • Sohn, Mun-Gu;Kim, Ju-Pil
    • Bulletin of the Korean Mathematical Society
    • /
    • v.25 no.2
    • /
    • pp.203-209
    • /
    • 1988
  • In this paper, we define a g-regular semigroup which is a generalization of a regular semigroup. And we want to find some properties of g-regular semigroup. G-regular semigroups contains the variety of all regular semigroup and the variety of all periodic semigroup. If a is an element of a semigroup S, the smallest left ideal containing a is Sa.cup.{a}, which we may conveniently write as $S^{I}$a, and which we shall call the principal left ideal generated by a. An equivalence relation l on S is then defined by the rule alb if and only if a and b generate the same principal left ideal, i.e. if and only if $S^{I}$a= $S^{I}$b. Similarly, we can define the relation R. The equivalence relation D is R.L and the principal two sided ideal generated by an element a of S is $S^{1}$a $S^{1}$. We write aqb if $S^{1}$a $S^{1}$= $S^{1}$b $S^{1}$, i.e. if there exist x,y,u,v in $S^{1}$ for which xay=b, ubv=a. It is immediate that D.contnd.q. A semigroup S is called periodic if all its elements are of finite order. A finite semigroup is necessarily periodic semigroup. It is well known that in a periodic semigroup, D=q. An element a of a semigroup S is called regular if there exists x in S such that axa=a. The semigroup S is called regular if all its elements are regular. The following is the property of D-classes of regular semigroup.group.

  • PDF

Complex number on textbooks and Analysis on understanding state of students (교과서에 표현된 복소수와 이에 대한 학생들의 이해 실태 분석)

  • Park, Seon-Ho;Pyo, Sung-Soo
    • The Mathematical Education
    • /
    • v.51 no.1
    • /
    • pp.1-19
    • /
    • 2012
  • In this study, contents of 'the 2007 revised curriculum handbook' and 16 kinds of mathematics textbooks were analyzed first. The purpose of this study is to examine the understanding state of students at general high schools by making questionnaires to survey the understanding state on contents of chapter of complex number based on above analysis. Results of research can be summarized as follows. First, the content of chapter of complex number in textbook was not logically organized. In the introduction of imaginary number unit, two kinds of marks were presented without any reason and it has led to two kinds of notation of negative square root. There was no explanation of difference between delimiter symbol and operator symbol at all. The concepts were presented as definition without logical explanations. Second, students who learned with textbook in which problems were pointed out above did not have concept of complex number for granted, and recognized it as expansion of operation of set of real numbers. It meant that they were confused of operation of complex numbers and did not form the image about number system itself of complex number. Implications from this study can be obtained as follows. First, as we came over to the 7th curriculum, the contents of chapter of complex number were too abbreviated to have the logical configuration of chapter in order to remove the burden for learning. Therefore, the quantitative expansion and logical configuration fit to the level for high school students corresponding to the formal operating stage are required for correct configuration of contents of chapter. Second, teachers realize the importance of chapter of complex number and reconstruct the contents of chapter to let students think conceptually and logically.

Analysis on number sense for problem solving methods of elementary and middle school students (초등학생과 중학생의 수감각 문제해결 방법에 대한 분석)

  • Kim, Ji Youn;Hyun, Eun Jeong;Kim, Seong Kyeong
    • Communications of Mathematical Education
    • /
    • v.29 no.1
    • /
    • pp.1-18
    • /
    • 2015
  • Mathematics education emphasizes on nurturing number sense, but researches on this have been scarce, and most of them has been confined to elementary level students. This thesis, therefore, tried to analyze how elementary students solve mathematics sense problems in order to give some insight into how to teach number sense. For this, this thesis categorized into two ways of using number sense and algorithm as problem solving, and analyzed students' responses using test sheets. Accordingly, middle school students showed higher score on the number sense test and higher rates of using number sense than elementary students. In addition, students showing higher achievement used both number sense and algorithm, but those of lower achievement were more likely to use only algorithm. Plus, among students showing higher achievement, middle school students used more number sense than elementary school students, but there was not meaningful difference among those showing lower achievement. Lastly, It was shown that there was difference in the rate using number sense according to the number sense components.

The cognitive load of middle school students according to problem types in collaborative learning for solving the function problems (함수 영역 문제해결 협력학습 과정에서 문제 유형에 따른 중학생의 인지부하 분석)

  • Kim, Seong-Kyeong;Kim, Ji Youn;Lee, Sun Ji;Lee, Bongju
    • The Mathematical Education
    • /
    • v.57 no.2
    • /
    • pp.137-155
    • /
    • 2018
  • From the assumption that an individual's working memory capacity is limited, the cognitive load theory is concerned with providing adequate instructional design so as to avoid overloading the learner's working memory. Based on the cognitive load theory, this study aimed to provide implications for effective problem-based collaborative teaching and learning design by analyzing the level of middle school students' cognitive load which is perceived according to the problem types(short answer type, narrative type, project) in the process of collaborative problem solving in middle school function part. To do this, this study analyzed whether there is a relevant difference in the level of cognitive load for the problem type according to the math achievement level and gender in the process of cooperative problem solving. As a result, there was a relevant difference in the task burden and task difficulty perceived according to the types of problems in both first and second graders in middle schools students. and there was no significant difference in the cognitive effort. In addition, the efficacy of task performance differed between first and second graders. The significance of this study is as follows: in the process of collaborative problem solving learning, which is most frequently used in school classrooms, it examined students' cognitive load according to problem types in various aspects of grade, achievement level, and gender.

A study on the understanding of mathematics preservice teachers for discrete probability distribution (이산확률분포에 대한 예비수학교사의 이해 분석)

  • Lee, Bongju;Yun, Yong Sik;Rim, Haemee
    • The Mathematical Education
    • /
    • v.59 no.1
    • /
    • pp.47-62
    • /
    • 2020
  • Understanding the concept of probability distribution becomes more important. We considered probabilities defined in the sample space, the definition of discrete random variables, the probability of defined discrete probability distribution, and the relationship between them as knowledge of discrete probability distribution, and investigated the understanding degree of the mathematics preservice teachers. The results are as follows. Firstly, about 70% of preservice teachers who participated in this study expressed discrete probability distribution graphs in ordered pairs or continuous distribution. Secondly, with regard to the two factors for obtaining discrete probability distributions: probability for each element in the sample space and the concept of random variables that convert each element in the sample space into a real value, only 13% of the preservice teachers understood and addressed both factors. Thirdly, 39% of the preservice teachers correctly responded to whether different probability distributions can be defined for one sample space. Fourthly, when the probability of each fundamental event was determined to obtain the probability distribution of the discrete random variables defined in the undefined sample space, approximately 70% habitually calculated by the uniform probability. Finally, about 20% of preservice teachers understood the meaning and relationship of binomial distribution, discrete random variables, and sample space. In relation, clear definitions and full explanations of concept need to be provided from textbooks and a program to improve the understanding of preservice teachers need to be developed.

THERE ARE NO NUMERICAL RADIUS PEAK n-LINEAR MAPPINGS ON c0

  • Sung Guen Kim
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.3
    • /
    • pp.677-685
    • /
    • 2023
  • For n ≥ 2 and a real Banach space E, 𝓛(nE : E) denotes the space of all continuous n-linear mappings from E to itself. Let Π (E) = {[x*, (x1, . . . , xn)] : x*(xj) = ||x*|| = ||xj|| = 1 for j = 1, . . . , n }. An element [x*, (x1, . . . , xn)] ∈ Π(E) is called a numerical radius point of T ∈ 𝓛(nE : E) if |x*(T(x1, . . . , xn))| = v(T), where the numerical radius v(T) = sup[y*,y1,...,yn]∈Π(E)|y*(T(y1, . . . , yn))|. For T ∈ 𝓛(nE : E), we define Nradius(T) = {[x*, (x1, . . . , xn)] ∈ Π(E) : [x*, (x1, . . . , xn)] is a numerical radius point of T}. T is called a numerical radius peak n-linear mapping if there is a unique [x*, (x1, . . . , xn)] ∈ Π(E) such that Nradius(T) = {±[x*, (x1, . . . , xn)]}. In this paper we present explicit formulae for the numerical radius of T for every T ∈ 𝓛(nE : E) for E = c0 or l. Using these formulae we show that there are no numerical radius peak mappings of 𝓛(nc0 : c0).

AN EXTENSION OF SCHNEIDER'S CHARACTERIZATION THEOREM FOR ELLIPSOIDS

  • Dong-Soo Kim;Young Ho Kim
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.4
    • /
    • pp.905-913
    • /
    • 2023
  • Suppose that M is a strictly convex hypersurface in the (n + 1)-dimensional Euclidean space 𝔼n+1 with the origin o in its convex side and with the outward unit normal N. For a fixed point p ∈ M and a positive constant t, we put 𝚽t the hyperplane parallel to the tangent hyperplane 𝚽 at p and passing through the point q = p - tN(p). We consider the region cut from M by the parallel hyperplane 𝚽t, and denote by Ip(t) the (n + 1)-dimensional volume of the convex hull of the region and the origin o. Then Schneider's characterization theorem for ellipsoids states that among centrally symmetric, strictly convex and closed surfaces in the 3-dimensional Euclidean space 𝔼3, the ellipsoids are the only ones satisfying Ip(t) = 𝜙(p)t, where 𝜙 is a function defined on M. Recently, the characterization theorem was extended to centrally symmetric, strictly convex and closed hypersurfaces in 𝔼n+1 satisfying for a constant 𝛽, Ip(t) = 𝜙(p)t𝛽. In this paper, we study the volume Ip(t) of a strictly convex and complete hypersurface in 𝔼n+1 with the origin o in its convex side. As a result, first of all we extend the characterization theorem to strictly convex and closed (not necessarily centrally symmetric) hypersurfaces in 𝔼n+1 satisfying Ip(t) = 𝜙(p)t𝛽. After that we generalize the characterization theorem to strictly convex and complete (not necessarily closed) hypersurfaces in 𝔼n+1 satisfying Ip(t) = 𝜙(p)t𝛽.

THE NORMING SET OF A SYMMETRIC n-LINEAR FORM ON THE PLANE WITH A ROTATED SUPREMUM NORM FOR n = 3, 4, 5

  • Sung Guen Kim
    • Communications of the Korean Mathematical Society
    • /
    • v.39 no.3
    • /
    • pp.693-715
    • /
    • 2024
  • Let n ∈ ℕ, n ≥ 2. An element (x1, . . . , xn) ∈ En is called a norming point of T ∈ 𝓛(nE) if ||x1|| = ··· = ||xn|| = 1 and |T(x1, . . . , xn)| = ||T||, where 𝓛(nE) denotes the space of all continuous n-linear forms on E. For T ∈ 𝓛(nE), we define Norm(T) = {(x1, . . . , xn) ∈ En : (x1, . . . , xn) is a norming point of T}. Norm(T) is called the norming set of T. Let $0{\leq}{\theta}{\leq}{\frac{{\pi}}{4}}$ and ${\ell}^2_{{\infty},{\theta}}={\mathbb{R}}^2$ with the rotated supremum norm $${\parallel}(x,y){\parallel}_{({\infty},{\theta})}={\max}\{{\mid}x\;cos\;{\theta}+y\;sin\;{\theta}{\mid},\;{\mid}x\;sin\;{\theta}-y\;cos\;{\theta}|\}$$. In this paper, we characterize the norming set of T ∈ 𝓛(n2(∞,θ)). Using this result, we completely describe the norming set of T ∈ 𝓛s(n2(∞,θ)) for n = 3, 4, 5, where 𝓛s(n2(∞,θ)) denotes the space of all continuous symmetric n-linear forms on ℓ2(∞,θ). We generalizes the results from [9] for n = 3 and ${\theta}={\frac{{\pi}}{4}}$.

TITIUS-BODE'S Relation and 55 Cancri

  • Chang, Heon-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.3
    • /
    • pp.239-244
    • /
    • 2008
  • Two kinds of important issues on Titius-Bode's relation have been discussed up to now: one is if there is a simple mathematical relation between distances of natural bodies orbiting a central body, and the other is if there is any physical basis for such a relation. These may be tackled by answering a question whether Titius-Bode's relation is valid universally in exo-planetary systems. We have examined whether Titius Bode's relation is also applicable to exo-planetary systems by statistically studying the distribution of the ratio of rotational periods of two planets in an exo-planetary system, 55 Cnc, by comparing it with that derived from Titius-Bode's relation. We find that the distribution of the ratio of rotational periods of randomly chosen two planets in the 55 Cnc system is apparently inconsistent with that derived from Titius-Bode's relation. The probability that two data sets are drawn from the same distribution function is 50%. We also find that the Fourier power spectra show that the distribution of the semi-major axis of planets in the 55 Cnc system seems to be stretched. We conclude by pointing out that large numbers of planets should be examined to more convincingly explain the distribution of the distance of planetary formation regions.