DOI QR코드

DOI QR Code

TITIUS-BODE'S Relation and 55 Cancri

  • Chang, Heon-Young (Department of Astronomy and Atmospheric Sciences, Kyungpook National University)
  • Published : 2008.09.15

Abstract

Two kinds of important issues on Titius-Bode's relation have been discussed up to now: one is if there is a simple mathematical relation between distances of natural bodies orbiting a central body, and the other is if there is any physical basis for such a relation. These may be tackled by answering a question whether Titius-Bode's relation is valid universally in exo-planetary systems. We have examined whether Titius Bode's relation is also applicable to exo-planetary systems by statistically studying the distribution of the ratio of rotational periods of two planets in an exo-planetary system, 55 Cnc, by comparing it with that derived from Titius-Bode's relation. We find that the distribution of the ratio of rotational periods of randomly chosen two planets in the 55 Cnc system is apparently inconsistent with that derived from Titius-Bode's relation. The probability that two data sets are drawn from the same distribution function is 50%. We also find that the Fourier power spectra show that the distribution of the semi-major axis of planets in the 55 Cnc system seems to be stretched. We conclude by pointing out that large numbers of planets should be examined to more convincingly explain the distribution of the distance of planetary formation regions.

Keywords

References

  1. Basano, L. & Hughes, D. W. 1979, Il Nuovo Cimento, Vol.2C, 505
  2. Blagg, M. A. 1913, MNRAS, 73, 414 https://doi.org/10.1093/mnras/73.6.414
  3. Dermott, S. F. 1968, MNRAS, 141, 363 https://doi.org/10.1093/mnras/141.3.363
  4. Dermott, S. F. 1972, in On the Origin of the Solar System-Nice Symposium, ed. H. Reeves (Paris:CNRS), p.320
  5. Dermott, S. F. 1973, Nature, 244, 18 https://doi.org/10.1038/244018a0
  6. Dobo, A. 1981, Astron. Nachr., Bd.302, H.2
  7. Fischer, D. A., Marcy, G. W., Butler, R. P., Vogt, S. S., Laughlin, G., Henry, G. W., Abouav, D., Peek, K. M. G., Wright, J. T., Johnson, J. A., McCarthy, C., & Isaacson, H. 2008, ApJ, 675, 790 https://doi.org/10.1086/525512
  8. Graner, F. & Dubrulle, B. 1994a, A&A, 282, 262
  9. Graner, F. & Dubrulle, B. 1994b, A&A, 282, 269
  10. Hayes, W. & Tremaine, S. 1998, Icarus, 135, 549 https://doi.org/10.1006/icar.1998.5999
  11. Isaacman, R. & Sagan, C. 1977, Icarus, 31, 510 https://doi.org/10.1016/0019-1035(77)90153-1
  12. Kotliarov, I. 2008, astro-ph/0806.3532
  13. Lecar, M. 1973, Nature, 242, 318 https://doi.org/10.1038/242318a0
  14. Li, X. Q., Zhang, H., & Li, Q. B. 1995, A&A, 304, 617
  15. Llibre, J. & Pin˜ol, C. 1987, AJ, 93, 1272 https://doi.org/10.1086/114410
  16. Louise, R. 1982, M&P, 26, 93
  17. Lynch, P. 2003, MNRAS, 341, 1174 https://doi.org/10.1046/j.1365-8711.2003.06492.x
  18. Neuh¨auser, R. & Feitzinger, J. V. 1986, A&A, 170, 174
  19. Nieto, M. M. 1970, A&A, 8, 105
  20. Nieto, M. M. 1972, The Titius-Bode Law of Planetary Distances: Its History and Theory (Oxford:Pergamon Press)
  21. Ortiz, J. L., Moreno, F., Molina, A., Sanz, P. S., & Gutierrez, P. J. 2007, MNRAS, 379, 1222 https://doi.org/10.1111/j.1365-2966.2007.12017.x
  22. Patton, J. M. 1988, CeMec, 44, 365
  23. Pletser, V. 1986, Earth, Moon, and Planets, 36, 209
  24. Pletser, V. 1988, Earth, Moon, and Planets, 42, 1 https://doi.org/10.1007/BF00118035
  25. Poveda, A. & Lara, P. 2008, astro-ph/0803.2240
  26. Prentice, A. J. R. 1977, in The Origin of the Solar System, ed. S. F. Dermott (New York: Wiley)
  27. Ragnarsson, S.-I. 1995, A&A, 301, 609
  28. Rawal, J. J. 1978, BASI, 6, 92
  29. Rawal, J. J. 1984, Earth, Moon, and Planets, 31, 175 https://doi.org/10.1007/BF00055528
  30. Rawal, J. J. 1986, Earth, Moon, and Planets, 34, 93 https://doi.org/10.1007/BF00054038
  31. Rawal, J. J. 1989, Earth, Moon, and Planets, 44, 265 https://doi.org/10.1007/BF00054242
  32. Richardson, D. E. 1945, Astron., 53, 1
  33. Stone, E. C. & Miner, E. D. 1986, Science, 233, 39 https://doi.org/10.1126/science.233.4759.39
  34. Vahia, M. N., Mahajani, P., & Rao, A. R. 2003, BASI, 31, 37

Cited by

  1. Exoplanet predictions based on the generalized Titius-Bode relation vol.435, pp.2, 2013, https://doi.org/10.1093/mnras/stt1357