• Title/Summary/Keyword: Krull module

Search Result 17, Processing Time 0.026 seconds

INTEGRAL CLOSURE OF A GRADED NOETHERIAN DOMAIN

  • Park, Chang-Hwan;Park, Mi-Hee
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.3
    • /
    • pp.449-464
    • /
    • 2011
  • We show that, if R is a graded Noetherian ring and I is a proper ideal of R generated by n homogeneous elements, then any prime ideal of R minimal over I has h-height ${\leq}$ n, and that if R is a graded Noetherian domain with h-dim R ${\leq}$ 2, then the integral closure R' of R is also a graded Noetherian domain with h-dim R' ${\leq}$ 2. We also present a short improved proof of the result that, if R is a graded Noetherian domain, then the integral closure of R is a graded Krull domain.

REGULARITY RELATIVE TO A HEREDITARY TORSION THEORY FOR MODULES OVER A COMMUTATIVE RING

  • Qiao, Lei;Zuo, Kai
    • Journal of the Korean Mathematical Society
    • /
    • v.59 no.4
    • /
    • pp.821-841
    • /
    • 2022
  • In this paper, we introduce and study regular rings relative to the hereditary torsion theory w (a special case of a well-centered torsion theory over a commutative ring), called w-regular rings. We focus mainly on the w-regularity for w-coherent rings and w-Noetherian rings. In particular, it is shown that the w-coherent w-regular domains are exactly the Prüfer v-multiplication domains and that an integral domain is w-Noetherian and w-regular if and only if it is a Krull domain. We also prove the w-analogue of the global version of the Serre-Auslander-Buchsbaum Theorem. Among other things, we show that every w-Noetherian w-regular ring is the direct sum of a finite number of Krull domains. Finally, we obtain that the global weak w-projective dimension of a w-Noetherian ring is 0, 1, or ∞.

COMINIMAXNESS OF LOCAL COHOMOLOGY MODULES WITH RESPECT TO IDEALS OF DIMENSION ONE

  • Roshan-Shekalgourabi, Hajar
    • Honam Mathematical Journal
    • /
    • v.40 no.2
    • /
    • pp.211-218
    • /
    • 2018
  • Let R be a commutative Noetherian ring, a be an ideal of R and M be an R-module. It is shown that if $Ext^i_R(R/a,M)$ is minimax for all $i{\leq}{\dim}\;M$, then the R-module $Ext^i_R(N,M)$ is minimax for all $i{\geq}0$ and for any finitely generated R-module N with $Supp_R(N){\subseteq}V(a)$ and dim $N{\leq}1$. As a consequence of this result we obtain that for any a-torsion R-module M that $Ext^i_R(R/a,M)$ is minimax for all $i{\leq}dim$ M, all Bass numbers and all Betti numbers of M are finite. This generalizes [8, Corollary 2.7]. Also, some equivalent conditions for the cominimaxness of local cohomology modules with respect to ideals of dimension at most one are given.

TORSION THEORY, CO-COHEN-MACAULAY AND LOCAL HOMOLOGY

  • Bujan-Zadeh, Mohamad Hosin;Rasoulyar, S.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.39 no.4
    • /
    • pp.577-587
    • /
    • 2002
  • Let A be a commutative ring and M an Artinian .A-module. Let $\sigma$ be a torsion radical functor and (T, F) it's corresponding partition of Spec(A) In [1] the concept of Cohen-Macauly modules was generalized . In this paper we shall define $\sigma$-co-Cohen-Macaulay (abbr. $\sigma$-co-CM). Indeed this is one of the aims of this paper, we obtain some satisfactory properties of such modules. An-other aim of this paper is to generalize the concept of cograde by using the left derived functor $U^{\alpha}$$_{I}$(-) of the $\alpha$-adic completion functor, where a is contained in Jacobson radical of A.A.

A NOTE ON GORENSTEIN PRÜFER DOMAINS

  • Hu, Kui;Wang, Fanggui;Xu, Longyu
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.5
    • /
    • pp.1447-1455
    • /
    • 2016
  • In this note, we mainly discuss the Gorenstein $Pr{\ddot{u}}fer$ domains. It is shown that a domain is a Gorenstein $Pr{\ddot{u}}fer$ domain if and only if every finitely generated ideal is Gorenstein projective. It is also shown that a domain is a PID (resp., Dedekind domain, $B{\acute{e}}zout$ domain) if and only if it is a Gorenstein $Pr{\ddot{u}}fer$ UFD (resp., Krull domain, GCD domain).

THE DIMENSION GRAPH FOR MODULES OVER COMMUTATIVE RINGS

  • Shiroyeh Payrovi
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.3
    • /
    • pp.733-740
    • /
    • 2023
  • Let R be a commutative ring and M be an R-module. The dimension graph of M, denoted by DG(M), is a simple undirected graph whose vertex set is Z(M) ⧵ Ann(M) and two distinct vertices x and y are adjacent if and only if dim M/(x, y)M = min{dim M/xM, dim M/yM}. It is shown that DG(M) is a disconnected graph if and only if (i) Ass(M) = {𝖕, 𝖖}, Z(M) = 𝖕 ∪ 𝖖 and Ann(M) = 𝖕 ∩ 𝖖. (ii) dim M = dim R/𝖕 = dim R/𝖖. (iii) dim M/xM = dim M for all x ∈ Z(M) ⧵ Ann(M). Furthermore, it is shown that diam(DG(M)) ≤ 2 and gr(DG(M)) = 3, whenever M is Noetherian with |Z(M) ⧵ Ann(M)| ≥ 3 and DG(M) is a connected graph.