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SEMI-DIVISORIALITY OF HOM-MODULES AND INJECTIVE

COGENERATOR OF A QUOTIENT CATEGORY

Hwankoo Kim

Abstract. In this paper, we study w-nullity and (co-)semi-divisoriality

of Hom-modules and the semi-divisorial envelope of HomR(M,N) under
suitable conditions on R,M, and N . We also investigate an injective
cogenerator of a quotient category.

1. Introduction

Let R be an integral domain. In [17] Wang and McCasland defined semi-
divisorial closure, or w-closure for torsion-free R-modules. In [7], H. Kim ex-
tended this notion to any R-module and introduced and studied the related
notions of co-semi-divisoriality and w-nullity. In [7, 8, 9] these concepts were
then used to give new module-theoretic characterizations of t-linkative domains,
generalized GCD domains, and strong Mori domains, classes of domains widely
considered in multiplicative ideal theory.

Earlier, in [1, 12, 13], Beck, Nishi and Shinagawa investigated injective mod-
ules over a Krull domain in terms of co-divisorial modules, pseudo-null modules,
and divisorial modules and investigated pseudo-nullity and (co-)divisoriality of
Home-modules. In particular, it was shown that in the case of a Krull domain
R with quotient field K, the injective envelope E(K/R) of K/R is a cogenera-
tor of the quotient category Mod(R)/M0, where Mod(R) is the category of all
unitary R-modules and M0 is the thick subcategory of the modules with trivial
maps into the codivisorial modules. Recently, in [11] Mouçouf characterized
the rings of Krull type R with quotient field K such that the (canonical) func-
torial image of E(K/R) is an injective cogenerator of the quotient category
Mod(R)/M0. Also in [16], Wang investigated the case when Hom-modules are
semi-divisorial in torsion-free.
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In this paper, we study an injective cogenerator of a quotient category and
w-nullity and (co-)semi-divisoriality of Hom-modules using methods developed
in [1, 11, 12, 13]. As a corollary, for the class of completely integrally closed
domains, we characterize Krull domains in terms of an injective cogenerator
of a quotient category. We also investigate the semi-divisorial envelope of
HomR(M,N) under suitable conditions on R,M, and N .

Throughout this paper, R denotes an integral domain with quotient field K.
Let F(R) denote the set of nonzero fractional ideals of R. Recall that the
function on F(R) defined by A 7→ (A−1)−1 = Av is a star operation called
the v-operation, where A−1 = R :K A = {x ∈ K | xA ⊆ R}. An ideal J of
R is called a Glaz-Vasconcelos ideal if J is a finitely generated ideal of R with
J−1 = R. We abbreviate this as GV-ideal, denoted by J ∈ GV(R). Following
[17], a torsion-free R module M is called a w-module if Jx ⊆ M for J ∈ GV(R)
and x ∈ M⊗K implies that x ∈ M , which is said to be semi-divisorial in [4]. For
a torsion-free R-module M , Wang and McCasland defined the w-envelope of M
in [17] as Mw = {x ∈ M⊗K | Jx ⊆ M for some J ∈ GV(R)}. In particular, if I
is a nonzero fractional ideal, then Iw = {x ∈ K | Jx ⊆ I for some J ∈ GV(R)}.
The canonical map I 7→ Iw on F(R) is a star-operation, denoted w. It was
shown in [17] that a prime ideal P of R is a w-ideal if and only if Pw ̸= R.
Therefore, all prime ideals contained in a proper w-ideal of R are also w-ideals.
We denote by w-Max(R) the set of w-maximal ideals of R. It is also worth
noting that w distributes over (finite) intersections [17, Proposition 2.5]. For
unexplained terminology and notation, we refer to [2, 3, 14].

2. w-null and (co-)semi-divisorial Hom-modules

In [7], H. Kim introduced the notions of “co-semi-divisoriality” and “w-
nullity” of a module as follows. Let M be a module over an integral domain R
and let τ(M) := {x ∈ M | (O(x))w = R}, where O(x) := (0 :R x) = annR(x)
is the order ideal of x. Then τ(M) is a submodule of M . M is said to be
co-semi-divisorial (resp., w-null) if τ(M) = 0 (resp., τ(M) = M). Note that
the notions of co-semi-divisoriality and w-nullity can be interpreted in terms of
a suitable torsion theory [2, Proposition IX.6.2 and Proposition IX.6.4] (with
P = w-Max(R)).

Let R be an integral domain, let Tτ (R) denote the full subcategory of
Mod(R) consisting of all modules M such that MP = 0 for all P ∈ w-Max(R),
and let Fτ (R) denote the full subcategory of all R-modules M have no sub-
object other than zero belonging to Tτ (R). Finally let Cτ (R) be the full sub-
category of Mod(R) consisting of all co-semi-divisorial and semi-divisorial R-
modules.

In an abelian category A, we have the following definitions:
(a) An injective object E is called an injective cogenerator if HomA(M,E) ̸=

0 for every M ∈ A that is not a zero object.
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(b) A nonempty full subcategory C of A is said to be thick if, for each short
exact sequence 0 → L → M → N → 0 in A, M is an object of C if and only if
L and N are objects of C. It is also called a Serre subcategory of A.

It is clear that Tτ (R) is a thick subcategory of Mod(R). Then we can
now consider the quotient category Mod(R)/Tτ (R) and the canonical functor
T : Mod(R) → Mod(R)/Tτ (R).

As usual, we denote by E(M) the injective envelope of an R-module M .
The following result will be useful later on.

Proposition 2.1. The following statements are equivalent for an R-module
M .

(1) M is co-semi-divisorial, i.e., M ∈ Fτ (R).
(2) O(x) is a w-ideal for every element x ∈ M .
(3) (O(x))w ̸= R for every nonzero element x ∈ M .
(4) HomR(N,M) = 0 for every w-null R-module N .
(5) HomR(N,E(M)) = 0 for every w-null R-module N .

Proof. The equivalences of (1), (2), (3), and (4) are given in [7, Proposition
2.6], while the equivalence of (1) and (5) follows from [6, Proposition 1.2]. □

Note from [17, Proposition 1.4] that the annihilator ideal of any submodule
of a co-semi-divisorial module is a w-ideal. Recall from [1] that a module M
is said to be codivisorial if the annihilator of every nonzero element of M is a
divisorial ideal. Thus in a Krull domain, the notions of co-semi-divisoriality
and codivisoriality are the same.

Recall from [16, Definition 4.5] that an R-moduleM is said to be w-vanishing
if MP = 0 for any maximal w-ideal P of R.

Proposition 2.2. Let N be an R-module. Then the following statements are
equivalent.

(1) N is w-null, i.e., M ∈ Tτ (R).
(2) For each x ∈ N , O(x) is not contained in any maximal w-ideal.
(3) N is w-vanishing.
(4) There is a torsion-free R-module F with N ∼= Fw/F .
(5) HomR(N,E(M)) = 0 for every co-semi-divisorial R-module M .

Proof. The equivalences of (1), (2), (3), and (4) are given in [7, Proposition
9.3], while the equivalence of (1) and (5) follows from [6, Proposition 1.2]. □

Now we study w-nullity and (co-)semi-divisoriality of Hom-modules. It was
shown in [7, Proposition 3.1] that an R-module M is co-semi-divisorial if and
only if HomR(Z(R),M) = 0, where Z(R) :=

⊕
{I≤R | Iw=R} R/I.

Proposition 2.3. Let R be an integral domain and let M and N be R-modules.
If M is co-semi-divisorial, then so is HomR(N,M).
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Proof. By [7, Proposition 2.6], it suffices to show that HomR(L,HomR(N,M))
= 0 for every w-null R-module L. But this follows from HomR(L,HomR(N,M))
∼= HomR(N,HomR(L,M)) = 0 since M is co-semi-divisorial. □

Proposition 2.4. Let R be an integral domain and let M and N be any R-
module. If M is w-null, then so is TorRn (N,M) for all n ≥ 0.

Proof. First we consider the case n = 0. For every co-semi-divisorial R-module
L we have HomR(N ⊗R M,E(L)) ∼= HomR(N,HomR(M,E(L))) = 0 since M
is w-null; therefore N ⊗R M is w-null by Proposition 2.2. For the case when
n ≥ 1, we consider a projective resolution of N :

· · · → Pn → Pn−1 → · · · → P2 → P1 → P0 → N → 0.

Then, since each Pi ⊗ M is w-null, we can see that TorRn (N,M) is w-null for
every n ≥ 0 by noting that the submodules and homomorphic images of w-null
modules are also w-null. □

Now we recall some definitions from [7]: Let M be an R-module. Then
W (M) := π−1(τ(E(M)/M)) is called the semi-divisorial envelope of M , where
π : E(M) → E(M)/M is the canonical projection, M is said to be semi-

divisorial if W (M) = M , and M is said to be weakly w-flat if TorR1 (Z(R),M) =
0. It is clear from the definition that every injective R-module is semi-divisorial.
Let N be an R-module. Then we denote Uw(N) := {L | L is a submodule of
N such that (L :R x)w = R for every x ∈ N}.

Proposition 2.5. The following statements are equivalent for an R-module
M .

(1) M is weakly w-flat.
(2) M ♭ := HomZ(M,Q/Z) is semi-divisorial.
(3) I ⊗R M → M is a monomorphism for all I ∈ Uw(R).
(4) L⊗R M → N ⊗R M is a monomorphism for all L ∈ Uw(N).

Proof. The equivalence of (1) and (2) is given in [7, Proposition 4.3], while the
equivalences of (2), (3), and (4) are given in [14, IX, Exercise 25]. □

Let M be a semi-divisorial R-module and N be an R-module. Then it
was shown in [7, Corollary 3.4] that if HomR(Tor

R
1 (Z(R), N),M) = 0, then

HomR(N,M) is semi-divisorial.

Theorem 2.6. Let R be an integral domain, M be a semi-divisorial R-module,
and N be an R-module. Then HomR(N,M) is semi-divisorial if one of the
following conditions is satisfied;

(i) M is co-semi-divisorial;
(ii) N is weakly w-flat.

Proof. It suffices to show that HomR(Tor
R
1 (Z(R), N),M) = 0 by [7, Corollary

3.4].
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(i) Note that R/I is w-null for every I ∈ Uw(R) ([7, Proposition 2.5]). Thus

we have that TorR1 (R/I,N) is w-null for every I ∈ Uw(R). Now since Tor
commutes with direct sums and w-nullity is closed under direct sums, we have
TorR1 (Z(R), N) is w-null. Therefore HomR(Tor

R
1 (Z(R), N),M) = 0 by the co-

semi-divisoriality of M ([7, Proposition 2.6]).
(ii) This follows from the definition of “weakly w-flat”. □

It was shown in [5, Proposition 2.2] that for a rank one flat ideal I ⊂ K,
the endomorphism EndR(I)(= I : I) of I is semi-divisorial. We extend this
result to any flat module in the following corollary. Note that flat R-modules
are torsion-free (and so co-semi-divisorial) for every integral domain R.

Corollary 2.7. Let R be an integral domain.

(1) If M is a flat R-module, then EndR(M) is a semi-divisorial R-module.
(2) If M is a co-semi-divisorial and semi-divisorial R-module, then so is

EndR(M).
(3) If M is co-semi-divisorial, then M∗ = HomR(M,R) is semi-divisorial.

3. Semi-divisorial equivalence

In this section, we investigate the semi-divisorial envelope of HomR(M,N)
under suitable conditions on R,M , and N . To do so, we need some definitions
and results.

Lemma 3.1 ([15, Proposition 1.1]). Let R be an integral domain and let L −→
M −→ N be an exact sequence of R-modules. If L and N are w-null, then so is
M .

Let M and N be R-modules and let f : M → N be an R-homomorphism.
Then f is said to be w-injective (resp., w-surjective) if ker(f) (resp., coker(f))
is w-null. And f is said to be w-isomorphic if f is both w-injective and w-
surjective.

Lemma 3.2 ([15, Lemma 1.2]). Let R be an integral domain and let f : L → M
and g : M → N be homomorphisms of R-modules. If f and g are w-injective
(resp., w-surjective or w-isomorphic), then so is gf .

Theorem 3.3 ([7, Theorem 8.1]). The following statements are equivalent for
an integral domain R.

(1) If an R-module M is injective, then so is τ(M).
(2) E(τ(M)) = τ(E(M)) for any R-module M .
(3) Let N be an essential extension of M . If M is w-null, then so is N .
(4) Let I ≤ R such that Iw ̸= R. Then I :R a is a w-ideal for some

a ∈ R \ Iw.
(5) If M is not w-null, then M has a nonzero co-semi-divisorial submodule.
(6) If I ≤ R, then there exists an ideal J of R such that Jw = R and

I = Iw ∩ J .



370 HWANKOO KIM

Recall that an integral domain R is said to be pseudo-t-linkative if R satisfies
one of the equivalent conditions of Theorem 3.3.

Proposition 3.4. Let R be a pseudo-t-linkative domain with quotient field
K( ̸= R). Let f : M → N be a homomorphism of R-modules and p : M →
M/τ(M), q : N → N/τ(N) be the canonical projections.

(1) There is a unique homomorphism f∗ : M/τ(M) → N/τ(N) such that
f∗p = qf .

(2) If f is w-injective, then f∗ is injective, and if f is w-isomorphic, then
so is f∗.

(3) If f is w-isomorphic and M is semi-divisorial, then f∗ is an isomor-
phism.

Proof. (1) The existence of f∗ follows from [7, Proposition 2.8] and its unique-
ness is clear.

(2) Suppose first that f is w-injective. Since τ(M) ⊆ f−1(τ(N)), we have
the following exact sequence

0 → ker(f) → f−1(τ(N)) → τ(N).

This implies, by Lemma 3.1, that f−1(τ(N)) is w-null; therefore τ(M) =
f−1(τ(N)). Thus f∗ must be injective. If, moreover, f is w-surjective, then
coker(f) is w-null. Since the induced homomorphism of coker(f) to coker(f∗)
is surjective, coker(f∗) must be w-null.

(3) Suppose that M is semi-divisorial. Then M ∼= τ(M) ⊕M/τ(M) by [7,
Corollary 8.9], and hence M/τ(M) is also semi-divisorial. Now the assertion
follows from [7, Corollary 5.3]. □

It was shown in [16, Proposition 2.1] that HomR(M,N) = HomR(Mw, N) for
a torsion-free R-module M and a w-module N . It follows from this result that
w, as a functor from the category of all torsion-free R-modules to the category
of all w-modules, is a reflector. The following result shows that the functor W
is a reflector from the category Fτ (R) to the category Cτ (R). By the R-dual
of an R-module M is meant the R-module M∗ = HomR(M,R).

Proposition 3.5. Let R be an integral domain and let M,N be R-modules.
Let i be the canonical injection of M to W (M). If N is co-semi-divisorial, then

HomR(i,W (N)) : HomR(W (M),W (N)) → HomR(M,W (N))

is an isomorphism. In particular, we have M∗ = (W (M))∗.

Proof. Since N is co-semi-divisorial, so is W (N) by [7, Proposition 2.9]. On the
other hand, W (M)/M is w-null by the definition of a semi-divisorial envelope
W . Therefore Hom(W (M)/M,W (N)) = 0, which implies that HomR(i,W (N))
is an injection. By [7, Proposition 3.2], we can see that HomR(i,W (N)) is a
surjection. □
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Corollary 3.6. Let R be a pseudo-t-linkative domain with quotient field K( ̸=
R). Let f : M → N be a homomorphism of R-modules. Then there exists
a unique homomorphism T (f) : T (M) → T (N) such that T (f)i = jf , where
i (resp., j) is the canonical homomorphism of M (resp., N) to T (M) (resp.,
T (N)). Moreover, if f is a w-isomorphism, then T (f) is an isomorphism.

Proof. The homomorphism f induces the homomorphism f∗ of M/τ(M) to
N/τ(N) by Proposition 3.4. Applying Proposition 3.5 to f∗, we can obtain a
homomorphism T (f) : T (M) → T (N) such that T (f)i = jf .

It is easy to show that, similarly to the proof of Proposition 3.5, Hom(i,T (N))
is an injection. This shows the uniqueness of T (f).

Suppose now that f is a w-isomorphism. Then by Proposition 3.4, f∗ is
a w-isomorphism (f∗ is necessarily injective). Since the canonical injection of
M/τ(M) to T (M) is an essential extension, T (f) must be an injection. Since
both f∗ and the canonical injection of N/τ(N) to T (N) are w-surjective, so
is the composition of them by Lemma 3.2. We can conclude from this fact
that T (f) is a w-surjection. Since a w-isomorphism of co-semi-divisorial and
semi-divisorial modules is an isomorphism by [7, Corollary 5.3], T (f) must be
an isomorphism. □

It was shown in [16, Proposition 2.3] that (HomR(M,N))w = HomR(M,Nw)
for a torsion-free finitely generated R-module M and a torsion-free R-module
N . As a corollary, Wang obtained that (EndR(M))w = EndR(Mw) for a
torsion-free finitely generated R-module M ([16, Corollary 2.4]).

Theorem 3.7. Let R be a pseudo-t-linkative domain. Let M and N be co-semi-
divisorial R-modules. If M is a submodule of a finitely generated R-module L,
then we have

W (HomR(M,N)) ∼= HomR(W (M),W (N)).

Proof. By Proposition 3.5, we have only to prove

W (HomR(M,N)) ∼= HomR(M,W (N)).

Consider the following exact sequence

0 → HomR(M,N) → HomR(M,W (N)) → HomR(M,W (N)/N).

Since N is co-semi-divisorial, so is W (N); thus, by Proposition 2.3, HomR(M ,
N) and HomR(M,W (N)) are co-semi-divisorial. Also we have that HomR(M ,
W (N)) is semi-divisorial by Theorem 2.6. Since a w-isomorphism of co-semi-
divisorial modules is an essential extension, it suffices to show that HomR(M ,
W (N)/N) is w-null.

In general, for a submodule M1 of a finitely generated R-module M2 and a
w-null R-module N1, we will show that HomR(M1, N1) is w-null. Set N2 :=
E(N1). Then N2 is w-null by [7, Theorem 8.1], since R is pseudo-t-linkative.
Let {x1, . . . , xn} be a system of generators of M2 and let f ∈ HomR(M2, N2).
Then O(f) = O(f(x1)) ∩ · · · ∩ O(f(xn)). Since each (O(f(xi)))w = R, we
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have (O(f))w = R by the distributivity of the star-operation w over finite
intersection. Hence HomR(M2, N2) is w-null. Therefore, HomR(M1, N2) is w-
null, since it is a homomorphic image of HomR(M2, N2). Thus HomR(M1, N1)
is w-null since it is isomorphic to a submodule of HomR(M1, N2). □
Corollary 3.8. Let R be a pseudo-t-linkative domain with quotient field K (̸=
R) and let M and N be co-semi-divisorial and semi-divisorial R-modules. If
M is a submodule of a finitely generated R-module, then HomR(M,N) is semi-
divisorial.

Let M and N be an R-modules. We say that M is semi-divisorially equiva-
lent to N if there exists a w-isomorphism of W (M) to W (N).

Proposition 3.9. Let R be a pseudo-t-linkative domain with quotient field
K( ̸= R). Let M and N be R-modules.

(1) M is semi-divisorially equivalent to N if and only if W (M/τ(M)) is
isomorphic to W (N/τ(N)). In particular, the “semi-divisorial equiva-
lence” is an equivalence relation.

(2) If M is w-isomorphic to N , then M is semi-divisorially equivalent to
N .

Proof. (1) The necessity follows from the facts that W (M) ∼= W (τ(M)) ⊕
W (M/τ(M)) and W (N) ∼= W (τ(N))⊕W (N/τ(N)) by [7, Corollary 8.9] and
W (τ(M)) and W (τ(N)) are w-null by [7, Theorem 8.1] since R is pseudo-t-
linkative. The sufficiency follows from Proposition 3.4.

(2) The assertion follows immediately from Corollary 3.6. □

4. Injective cogenerator of a quotient category

In this section, we generalize some results of [1, 11] related to an injective
cogenerator in a quotient category. We recall from [4] that a domain R is
said to be an H-domain if every ideal I of R with I−1 = R is quasi-finite (i.e.
I−1 = J−1 for some finitely generated subideal J of I).

Theorem 4.1. Let R be an H-domain with quotient field K( ̸= R), and let M
be any R-module. Then M is w-null if and only if HomR(M,E(K/R)) = 0.

Proof. (⇒): This follows from Proposition 2.1 since E(K/R) is co-semi-divisor-
ial by [7, Corollary 2.11].

(⇐): Suppose that M is not w-null and let N = M/τ(M). By Proposition
2.1 and [7, Proposition 2.8], there is a non-zero element of x ∈ N such that
O(x) is a proper w-ideal and hence R : O(x) ⫌ R (since R is an H-domain).
Let a ∈ R : O(x) \ R. Then R :R a ⊃ O(x). Let f : R → K/R be the
homomorphism defined by f(b) = ab, where ab is the class of ab in K/R. Since
ker(f) = R :R a ⊃ O(x), there is a non-zero homomorphism g : R/O(x) →
K/R such that f = gp, where p is the canonical projection of R to R/O(x).
Let i be the canonical injection of R/O(x)(∼= Rx) to N . Then there is a non-
zero homomorphism h of N to E(K/R) such that ig = hj, and hence hq is a
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non-zero homomorphism of M to E(K/R), where q is the canonical projection
of M to N . □

Since K/R ∈ Fτ (R), i.e., K/R has no subobject other than zero belonging
to Tτ (R), then T (E(K/R)) is the injective envelope of the object T (K/R) of
Mod(R)/Tτ (R).

Corollary 4.2. If R is an H-domain, then T (E(K/R)) is an injective cogen-
erator in the quotient category Mod(R)/Tτ (R). Hence every co-semi-divisorial
and semi-divisorial module over an H-domain can be embedded in an injective
module.

Proof. Let T (N) ∈ Mod(R)/Tτ (R) with HomMod(R)/Tτ (R)(T (N), T (E(K/R)))
= 0. Then by [11, Lemma 2.6] we have HomMod(R)(N,E(K/R)) = 0, and
by Theorem 4.1 we have N ∈ Tτ (R), and then T (N) = 0. It is clearly seen
that T (E(K/R)) is a cogenerator object of Mod(R)/Tτ (R). The last assertion
follows from [14, Proposition I.6.6]. □

Lemma 4.3. Let R be an integral domain, let P ∈ w-Max(R), let M be a
co-semi-divisorial R-module and let f : R/P → M a homomorphism. Then
either f ≡ 0 or f is injective.

Proof. Suppose that f ̸≡ 0 and let f(1̄) = x. Then we have x ∈ M . Since
M is co-semi-divisorial, then O(x) is a w-ideal, and since x ̸= 0, there exists
Q ∈ w-Max(R) such that O(x) ⊆ Q, but since P ⊆ O(x), we have P ⊆ Q and
hence P = Q, so O(x) = P and f is injective. □

We recall from [10, III.1.4] two facts related to Cτ (R), Mod(R)/Tτ (R), and
T .

(a) The subcategory Cτ (R) ofMod(R) may be identified withMod(R)/Tτ (R).
(b) Let M be an R-module. Then T (M) = W (M/τ(M)).

Therefore, we have that T (E(K/R)) = W (E(K/R)/τ(E(K/R))) ∼= E(K/R).

Theorem 4.4. Let R be an integral domain with quotient field K satisfying
(R :R x)v = (R :R x) for every x ∈ K. If T (E(K/R)) is an injective cogenera-
tor in the quotient category Mod(R)/Tτ (R), then R is an H-domain.

Proof. Note that if R satisfies that (R :R x)v = (R :R x) for every x ∈ K, then
K/R is co-divisorial. Suppose that R is not an H-domain. Then by [17, Propo-
sition 5.7] there exists a prime ideal P which is w-maximal but not a v-ideal.
First we show that the module R/P can not be injected in E(K/R). If this were

not so, then the kernel of the composition R
Π−→ R/P → E(R/K) is P , where

Π is the canonical projection. Then by [1, Corollary 1.7] P is a v-ideal, which
is a contradiction. Thus by Lemma 4.3, HomMod(R)(R/P,E(K/R)) = 0. So
HomMod(R)/Tτ (R)(T (R/P ), T (E(K/R))) ∼= HomMod(R)(W (R/P ), E(K/R)) ∼=
HomMod(R)(R/P,E(K/R)) = 0 (note that the last isomorphism follows from
Proposition 3.5). Since T (E(K/R)) is a cogenerator object in Mod(R)/Tτ (R),
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T (R/P ) = 0, and thus R/P ∈ Tτ (R), i.e., R/P is w-null. Hence Pw = R,
which is a contradiction. Therefore R is an H-domain. □

It is well known that if R is a completely integrally closed domain, then R
satisfies the hypothesis of Theorem 4.4. Now the following result follows from
Corollary 4.2, Theorem 4.4, and the fact that an integral domain R is a Krull
domain if and only if R is a completely integrally closed H-domain ([4, 3.2(d)]).

Corollary 4.5. Let R be a completely integrally closed domain. Then R is a
Krull domain if and only if E(K/R) is an injective cogenerator in the quotient
category Mod(R)/Tτ (R).

Let M be any R-module. We have a canonical mapping:

λM : M → HomR(HomR(M,E(K/R)), E(K/R)).

Let f ∈ HomR(M,E(K/R)). Then define λM (m) by the equation λM (m)(f) =
f(m) for all m ∈ M .

Theorem 4.6. Let R be an H-domain with quotient field K( ̸= R), and let M
be any R-module. Then M is co-semi-divisorial if and only if λM is injective.

Proof. (⇐): This follows from the facts that E(K/R) is co-semi-divisorial and
HomR(L,N) is co-semi-divisorial whenever N is co-divisorial.

(⇒): Let x ∈ M \{0}. Since Rx is not w-null, we can find a homomorphism
f : Rx → E(K/R) such that f(x) ̸= 0 by Theorem 4.1. Since E(K/R) is
injective, we can lift f to a mapping f̄ : M → E(K/R). This shows that λM

is injective, since λM (x)(f̄) = f̄(x) = f(x) ̸= 0 and hence λM (x) ̸= 0. □
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