• Title/Summary/Keyword: Korean medical college

Search Result 27,605, Processing Time 0.063 seconds

Conservative Genes among 1,309 Species of Prokaryotes (원핵생물 1,309종의 보존적 유전자)

  • Lee, Dong-Geun
    • Journal of Life Science
    • /
    • v.32 no.6
    • /
    • pp.463-467
    • /
    • 2022
  • As a result of applying the COG (Cluster of Orthologous Groups of Protein) algorithm to 1,309 species to confirm the conserved genes of prokaryotes, ribosomal protein S11 (COG0100) was identified. The numbers of conservative genes were 2, 5, 5, and 6 in 1,308, 1,307, 1,306, and 1,305 species, respectively. Twenty-nine genes were conserved in over 1,302 species, and they encoded 23 ribosomal proteins, 3 tRNA synthetases, 2 translation factors, and 1 RNA polymerase subunit. Most of them were related to protein production, suggesting the importance of protein expression in prokaryotes. The highest conservative COG was COG0048 (ribosomal protein S12) among the 29 COGs. The 29 conserved genes usually have one protein for each prokaryote. COG0090 (ribosomal protein L2) had not only the lowest conservation value but also the largest standard deviation of phylogenetic distance value. As COG0090 is not only a member of the ribosome, but also a regulator of replication and transcription, it could be inferred that prokaryotes have large variations in COG0090 to survive in various environments. This study could provide data necessary for basic science, tumor control, and development of antibacterial agents.

Comparison of the Immediate Effects of Two Types of Muscle Energy Techniques Applied to the Hamstring of Adults in Their Twenties With or Without Low Back Pain on the Pelvic Inclination and the Length of the Hamstring (요통 유무에 따른 20대 성인의 넙다리뒤근에 적용한 두 가지 근에너지 기법 종류에 따른 골반 경사각 및 넙다리뒤근 길이에 미치는 즉각적 효과 비교)

  • Hwang, Lee-kyeong;Kim, Suhn-yeop
    • Physical Therapy Korea
    • /
    • v.29 no.1
    • /
    • pp.37-47
    • /
    • 2022
  • Background: Lower back pain (LBP) is a major cause of disability and a common musculoskeletal disorder encountered at some point in life. Dysfunction of the lumbar vertebrae has been associated with decreased flexibility of the hamstrings, which exhibited a strong positive correlation with LBP. Hamstring tension affects lumbar pelvic rhythm. We aimed to activate pelvic stability with compression by Active Therapeutic Movement (ATM), muscle energy technique (MET) was applied to increase the flexibility of the hamstring. Objects: In this study, we aimed to investigate the effects of MET with ATM and general MET were applied to the hamstring of adults, who were in their twenties with nor without LBP, on their pelvic inclination and the length of their hamstring. Methods: A total of 32 subjects were briefed about the purpose of this study and agreed to participate voluntarily. Before the experiment, all subjects were pre-examined, and they were divided into an LBP group and a no lower back pain group accordingly. Thereafter, all subjects participated in both in a crossover manner. After at least one week, they switched to another group and participated in the same experiment. Results: The study results revealed that both groups demonstrated significant results in the modified active knee extension test (p < 0.01) and the sit and reach test (p < 0.01) performed to assess the hamstring flexibility; an interaction (p < 0.05) was noted. Moreover, a more significant difference was observed between the MET with ATM and the general MET. Although significant results were obtained for the pelvic inclination (p < 0.01), interaction was not noted. Conclusion: Conclusively, in this study, when the MET with ATM was applied to the two groups, there was a significant difference compared to the general MET for hamstring flexibility, but it was confirmed that there was no significant difference for the pelvic inclination.

The Effect Analysis of COVID-19 vaccination on social distancing (코로나19 백신접종이 사회적 거리두기 효과에 미치는 영향분석)

  • Moon, Su Chan
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.2
    • /
    • pp.67-75
    • /
    • 2022
  • The purpose of this study is to present an appropriate management plan as a supplement to the scientific evidence of the currently operated distancing system for preventing COVID-19. The currently being used mathematical models are expressed as simultaneous ordinary differential equations, there is a problem in that it is difficult to use them for the management of entry and exit of small business owners. In order to supplement this point, in this paper, a method for quantitatively expressing the risk of infection by people who gather is presented in consideration of the allowable risk given to the gathering space, the basic infection reproduction index, and the risk reduction rate due to vaccination. A simple quantitative model was developed that manages the probability of infection in a probabilistic level according to a set of visitors by considering both the degree of infection risk according to the vaccination status (non-vaccinated, primary inoculation, and complete vaccination) and the epidemic status of the virus. In a given example using the model, the risk was reduced to 55% when 20% of non-vaccinated people were converted to full vaccination. It was suggested that management in terms of quarantine can obtain a greater effect than medical treatment. Based on this, a generalized model that can be applied to various situations in consideration of the type of vaccination and the degree of occurrence of confirmed cases was also presented. This model can be used to manage the total risk of people gathered at a certain space in a real time, by calculating individual risk according to the type of vaccine, the degree of inoculation, and the lapse of time after inoculation.

Metagenome-Assembled Genomes of Komagataeibacter from Kombucha Exposed to Mars-Like Conditions Reveal the Secrets in Tolerating Extraterrestrial Stresses

  • Lee, Imchang;Podolich, Olga;Brenig, Bertram;Tiwari, Sandeep;Azevedo, Vasco;de Carvalho, Daniel Santana;Uetanabaro, Ana Paula Trovatti;Goes-Neto, Aristoteles;Alzahrani, Khalid J.;Reva, Oleg;Kozyrovska, Natalia;de Vera, Jean-Pierre;Barh, Debmalya;Kim, Bong-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.8
    • /
    • pp.967-975
    • /
    • 2022
  • Kombucha mutualistic community (KMC) is composed by acetic acid bacteria and yeasts, producing fermented tea with health benefits. As part of the BIOlogy and Mars EXperiment (BIOMEX) project, the effect of Mars-like conditions on the KMC was analyzed. Here, we analyzed metagenome-assembled genomes (MAGs) of the Komagataeibacter, which is a predominant genus in KMC, to understand their roles in the KMC after exposure to Mars-like conditions (outside the International Space Station) based on functional genetic elements. We constructed three MAGs: K. hansenii, K. rhaeticus, and K. oboediens. Our results showed that (i) K. oboediens MAG functionally more complex than K. hansenii, (ii) K. hansenii is a keystone in KMCs with specific functional features to tolerate extreme stress, and (iii) genes related to the PPDK, betaine biosynthesis, polyamines biosynthesis, sulfate-sulfur assimilation pathway as well as type II toxin-antitoxin (TA) system, quorum sensing (QS) system, and cellulose production could play important roles in the resilience of KMC after exposure to Mars-like stress. Our findings show the potential mechanisms through which Komagataeibacter tolerates the extraterrestrial stress and will help to understand minimal microbial composition of KMC for space travelers.

Anti-invasive Effect of Artemisia scoparia Halophyte Extract and its Solvent-partitioned Fractions in Human Fibrosarcoma Cells (인간 섬유육종세포에서 비쑥 추출물과 유기용매 분획물의 암전이 억제 효과)

  • Kim, Junse;Kong, Chang-Suk;Sim, Hyun-Bo;Seo, Youngwan
    • Journal of Life Science
    • /
    • v.31 no.12
    • /
    • pp.1100-1109
    • /
    • 2021
  • The halophyte Artemisia scoparia is an edible medicinal plant, with insecticidal, anti-inflammatory, anticholesterol, antipyretic, and antibacterial effects. The aim of this study was to assess the inhibitory effect of crude extract and solvent-partitioned fractions obtained from A. scoparia on MMP-2 and MMP-9 activity in phorbol-12-myristate-13-acetate (PMA)-stimulated human fibrosarcoma HT-1080 cells using four different activity tests: gelatin zymography, MMP enzyme-linked immunosorbent assay (ELISA), wound healing assay, reverse transcription-polymerase chain reaction (RT-PCR), and Western blot assay. A. scoparia samples were extracted twice with methylene chloride (MC) and twice with methanol (MeOH). After the MC and MeOH crude extracts were combined, the combined crude extracts showed a significant inhibitory effect against MMP-2 and MMP-9 enzymes. They were then fractionated into n-hexane, 85% (v/v) aqueous methanol (85% (v/v) aq.MeOH), n-butanol, and water according to solvent polarity. Among the four solvent-partitioned fractions, n-hexane and 85% (v/v) aq. MeOH fractions significantly inhibited MMP-2 and MMP-9 activity and cell mobility. In addition, the n-hexane and 85% (v/v) aq.MeOH fractions effectively inhibited MMP-2 and -9 activity in the gelatin zymography and MMP ELISA assay. In the wound healing assay, RT-PCR, and Western blot assay, all solvent-partitioned fractions, except the H2O fraction, significantly suppressed cell migration, as well as the expression levels of MMP-2 and -9 mRNA and proteins.

Establishment of intestinal organoids from small intestine of growing cattle (12 months old)

  • Kang Won, Park;Hyeon, Yang;Min Gook, Lee;Sun A, Ock;Hayeon, Wi;Poongyeon, Lee;In-Sul, Hwang;Jae Gyu, Yoo;Choon-Keun, Park;Bo Ram, Lee
    • Journal of Animal Science and Technology
    • /
    • v.64 no.6
    • /
    • pp.1105-1116
    • /
    • 2022
  • Recently, we reported the robust in vitro three-dimensional (3D) expansion of intestinal organoids derived from adult bovine (> 24 months) samples. The present study aimed to establish an in vitro 3D system for the cultivation of intestinal organoids derived from growing cattle (12 months old) for practical use as a potential alternative to in vivo systems for various purposes. However, very few studies on the functional characterization and 3D expansion of adult stem cells from livestock species compared to those from other species are available. In this study, intestinal crypts, including intestinal stem cells, from the small intestines (ileum and jejunum) of growing cattle were isolated and long-term 3D cultures were successfully established using a scaffold-based method. Furthermore, we generated an apical-out intestinal organoid derived from growing cattle. Interestingly, intestinal organoids derived from the ileum, but not the jejunum, could be expanded without losing the ability to recapitulate crypts, and these organoids specifically expressed several specific markers of intestinal stem cells and the intestinal epithelium. Furthermore, these organoids exhibited key functionality with regard to high permeability for compounds up to 4 kDa in size (e.g., fluorescein isothiocyanate [FITC]-dextran), indicating that apical-out intestinal organoids are better than other models. Collectively, these results indicate the establishment of growing cattle-derived intestinal organoids and subsequent generation of apical-out intestinal organoids. These organoids may be valuable tools and potential alternatives to in vivo systems for examining host-pathogen interactions involving epithelial cells, such as enteric virus infection and nutrient absorption, and may be used for various purposes.

Predicting Functional Outcomes of Patients With Stroke Using Machine Learning: A Systematic Review (머신러닝을 활용한 뇌졸중 환자의 기능적 결과 예측: 체계적 고찰)

  • Bae, Suyeong;Lee, Mi Jung;Nam, Sanghun;Hong, Ickpyo
    • Therapeutic Science for Rehabilitation
    • /
    • v.11 no.4
    • /
    • pp.23-39
    • /
    • 2022
  • Objective : To summarize clinical and demographic variables and machine learning uses for predicting functional outcomes of patients with stroke. Methods : We searched PubMed, CINAHL and Web of Science to identify published articles from 2010 to 2021. The search terms were "machine learning OR data mining AND stroke AND function OR prediction OR/AND rehabilitation". Articles exclusively using brain imaging techniques, deep learning method and articles without available full text were excluded in this study. Results : Nine articles were selected for this study. Support vector machines (19.05%) and random forests (19.05%) were two most frequently used machine learning models. Five articles (55.56%) demonstrated that the impact of patient initial and/or discharge assessment scores such as modified ranking scale (mRS) or functional independence measure (FIM) on stroke patients' functional outcomes was higher than their clinical characteristics. Conclusions : This study showed that patient initial and/or discharge assessment scores such as mRS or FIM could influence their functional outcomes more than their clinical characteristics. Evaluating and reviewing initial and or discharge functional outcomes of patients with stroke might be required to develop the optimal therapeutic interventions to enhance functional outcomes of patients with stroke.

Evaluation of Upper Limb Movement and Function in Stroke Patients Using Electromyography : A Review (근전도를 활용한 뇌졸중 환자의 상지 운동 및 기능 평가에 관한 고찰)

  • Lee, Jiyeon;Lee, Gyeong A;Jung, Jae Hyu;Park, Ji-Hyuk
    • Therapeutic Science for Rehabilitation
    • /
    • v.11 no.3
    • /
    • pp.37-50
    • /
    • 2022
  • Objective : This study aimed to investigate the use of electromyography (EMG) to evaluate upper limb movement or function in stroke patients. Methods : We reviewed papers published in journals between January 2018 and December 2021 using PubMed, EMBASE, Scopus, RISS, and KISS. The main keywords of databases were ('stroke' OR 'hemiplegia') AND ('EMG' OR 'electromyography' OR 'electromyogram' OR 'muscle activity') AND ('Upper limb' OR 'Hand'). Results : Fifteen studies were selected, most of which evaluated muscle activity. Interventions performing tasks related to activities of daily living (ADLs), using assistive technology, and interventions that provide repetitive training were most frequently applied. Conclusions : When evaluating upper limb functions using electromyography, it is meaningful to present an evaluation that can be used according to the purpose of the study and to provide a basis for setting up interventions that can utilize electromyography during evaluation.

20 (S)-ginsenoside Rh2 inhibits colorectal cancer cell growth by suppressing the Axl signaling pathway in vitro and in vivo

  • Zhang, Haibo;Yi, Jun-Koo;Huang, Hai;Park, Sijun;Kwon, Wookbong;Kim, Eungyung;Jang, Soyoung;Kim, Si-Yong;Choi, Seong-kyoon;Yoon, Duhak;Kim, Sung-Hyun;Liu, Kangdong;Dong, Zigang;Ryoo, Zae Young;Kim, Myoung Ok
    • Journal of Ginseng Research
    • /
    • v.46 no.3
    • /
    • pp.396-407
    • /
    • 2022
  • Background: Colorectal cancer (CRC) has a high morbidity and mortality worldwide. 20 (S)-ginsenoside Rh2 (G-Rh2) is a natural compound extracted from ginseng, which exhibits anticancer effects in many cancer types. In this study, we demonstrated the effect and underlying molecular mechanism of G-Rh2 in CRC cells in vitro and in vivo. Methods: Cell proliferation, migration, invasion, apoptosis, cell cycle, and western blot assays were performed to evaluate the effect of G-Rh2 on CRC cells. In vitro pull-down assay was used to verify the interaction between G-Rh2 and Axl. Transfection and infection experiments were used to explore the function of Axl in CRC cells. CRC xenograft models were used to further investigate the effect of Axl knockdown and G-Rh2 on tumor growth in vivo. Results: G-Rh2 significantly inhibited proliferation, migration, and invasion, and induced apoptosis and G0/G1 phase cell cycle arrest in CRC cell lines. G-Rh2 directly binds to Axl and inhibits the Axl signaling pathway in CRC cells. Knockdown of Axl suppressed the growth, migration and invasion ability of CRC cells in vitro and xenograft tumor growth in vivo, whereas overexpression of Axl promoted the growth, migration, and invasion ability of CRC cells. Moreover, G-Rh2 significantly suppressed CRC xenograft tumor growth by inhibiting Axl signaling with no obvious toxicity to nude mice. Conclusion: Our results indicate that G-Rh2 exerts anticancer activity in vitro and in vivo by suppressing the Axl signaling pathway. G-Rh2 is a promising candidate for CRC prevention and treatment.

A Case of Multisystem Inflammatory Syndrome in Children (MIS-C) with Acute Myocarditis

  • Lim, Jin Gyu;Lee, Da Hye;Oh, Kyung Jin;Choi, Sujin;Song, Young Hwan;Lee, Joowon;Lee, Hyunju
    • Pediatric Infection and Vaccine
    • /
    • v.28 no.3
    • /
    • pp.173-180
    • /
    • 2021
  • After initial reports of multisystem inflammatory syndrome in children (MIS-C) in April 2020 in Europe, this disease has been known to occur in children with recent history of coronavirus disease 2019 (COVID-19) and most cases have been reported in Europe and the Unites States of America. We report a case of a 14-year-old girl who was diagnosed with MIS-C with acute myocarditis and successfully treated with intravenous immunoglobulin (IVIG), methylprednisolone, and anakinra. At initial presentation, she had persistent high fever, generalized rash, generalized swelling, abdominal pain, and low blood pressure. She showed a remarkably elevated level of inflammation and cardiac enzyme markers and had a previous history of COVID-19 5 weeks before the initial presentation. After extensive work up, other infectious and non-infectious causes were excluded. She was diagnosed with MIS-C and initially treated with IVIG and high-dose methylprednisolone; however, despite treatment, her heart function deteriorated and coronary artery dilatation progressed. Therefore, anakinra, an interleukin-1 receptor antagonist, was administered on hospital day 6, after which her cardiac function exhibited improvement. She was discharged on hospital day 19 without any symptoms, and follow-up echocardiography after 1 month revealed fully recovered heart function with normal coronary arteries.