DOI QR코드

DOI QR Code

20 (S)-ginsenoside Rh2 inhibits colorectal cancer cell growth by suppressing the Axl signaling pathway in vitro and in vivo

  • Zhang, Haibo (Department of Animal Science and Biotechnology, ITRD, Kyungpook National University) ;
  • Yi, Jun-Koo (Gyeongbuk Livestock Research Institute) ;
  • Huang, Hai (Department of Animal Science and Biotechnology, ITRD, Kyungpook National University) ;
  • Park, Sijun (School of Life Sciences, BK21 FOUR KNU Creative BioResearch, Kyungpook National University) ;
  • Kwon, Wookbong (Division of Biotechnology, DGIST) ;
  • Kim, Eungyung (Department of Animal Science and Biotechnology, ITRD, Kyungpook National University) ;
  • Jang, Soyoung (School of Life Sciences, BK21 FOUR KNU Creative BioResearch, Kyungpook National University) ;
  • Kim, Si-Yong (School of Life Sciences, BK21 FOUR KNU Creative BioResearch, Kyungpook National University) ;
  • Choi, Seong-kyoon (Division of Biotechnology, DGIST) ;
  • Yoon, Duhak (Department of Animal Science and Biotechnology, ITRD, Kyungpook National University) ;
  • Kim, Sung-Hyun (Department of Bio-Medical Analysis, Korea Polytechnic College) ;
  • Liu, Kangdong (China-US (Henan) Hormel Cancer Institute) ;
  • Dong, Zigang (China-US (Henan) Hormel Cancer Institute) ;
  • Ryoo, Zae Young (School of Life Sciences, BK21 FOUR KNU Creative BioResearch, Kyungpook National University) ;
  • Kim, Myoung Ok (Department of Animal Science and Biotechnology, ITRD, Kyungpook National University)
  • Received : 2021.04.03
  • Accepted : 2021.07.17
  • Published : 2022.05.01

Abstract

Background: Colorectal cancer (CRC) has a high morbidity and mortality worldwide. 20 (S)-ginsenoside Rh2 (G-Rh2) is a natural compound extracted from ginseng, which exhibits anticancer effects in many cancer types. In this study, we demonstrated the effect and underlying molecular mechanism of G-Rh2 in CRC cells in vitro and in vivo. Methods: Cell proliferation, migration, invasion, apoptosis, cell cycle, and western blot assays were performed to evaluate the effect of G-Rh2 on CRC cells. In vitro pull-down assay was used to verify the interaction between G-Rh2 and Axl. Transfection and infection experiments were used to explore the function of Axl in CRC cells. CRC xenograft models were used to further investigate the effect of Axl knockdown and G-Rh2 on tumor growth in vivo. Results: G-Rh2 significantly inhibited proliferation, migration, and invasion, and induced apoptosis and G0/G1 phase cell cycle arrest in CRC cell lines. G-Rh2 directly binds to Axl and inhibits the Axl signaling pathway in CRC cells. Knockdown of Axl suppressed the growth, migration and invasion ability of CRC cells in vitro and xenograft tumor growth in vivo, whereas overexpression of Axl promoted the growth, migration, and invasion ability of CRC cells. Moreover, G-Rh2 significantly suppressed CRC xenograft tumor growth by inhibiting Axl signaling with no obvious toxicity to nude mice. Conclusion: Our results indicate that G-Rh2 exerts anticancer activity in vitro and in vivo by suppressing the Axl signaling pathway. G-Rh2 is a promising candidate for CRC prevention and treatment.

Keywords

Acknowledgement

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education(2020R1A4A1018280).

References

  1. Siegel RL, Miller KD, Goding Sauer A, Fedewa SA, Butterly LF, Anderson JC, Cercek A, Smith RA, Jemal A, Sauer Goding, et al. Colorectal cancer statistics, 2020. CA Cancer J Clin 2020;70:145-64. https://doi.org/10.3322/caac.21601
  2. Moghimi-Dehkordi B, Safaee A. An overview of colorectal cancer survival rates and prognosis in Asia. World J Gastrointest Oncol 2012;4:71-5. https://doi.org/10.4251/wjgo.v4.i4.71
  3. Zhao R, Choi BY, Wei L, Fredimoses M, Yin F, Fu X, Chen H, Liu K, Kundu JK, Dong Z, et al. Acetylshikonin suppressed growth of colorectal tumour tissue and cells by inhibiting the intracellular kinase, T-lymphokine-activated killer cell-originated protein kinase. Br J Pharmacol 2020;177:2303-19. https://doi.org/10.1111/bph.14981
  4. Hong P, Liu QW, Xie Y, Zhang QH, Liao L, He QY, Li B, Xu WW. Echinatin suppresses esophageal cancer tumor growth and invasion through inducing AKT/mTOR-dependent autophagy and apoptosis. Cell Death Dis 2020;11:524. https://doi.org/10.1038/s41419-020-2730-7
  5. Li Y, Xi Z, Chen X, Cai S, Liang C, Wang Z, Li Y, Tan H, Lao Y, Xu H. Natural compound oblongifolin C confers gemcitabine resistance in pancreatic cancer by downregulating Src/MAPK/ERK pathways. Cell Death Dis 2018;9:538. https://doi.org/10.1038/s41419-018-0574-1
  6. Tong-Lin Wu T, Tong YC, Chen IH, Niu HS, Li Y, Cheng JT. Induction of apoptosis in prostate cancer by ginsenoside Rh2. Oncotarget 2018;9:11109-18. https://doi.org/10.18632/oncotarget.24326
  7. Yang J, Yuan D, Xing T, Su H, Zhang S, Wen J, Bai Q, Dang D. Ginsenoside Rh2 inhibiting HCT116 colon cancer cell proliferation through blocking PDZ-binding kinase/T-LAK cell-originated protein kinase. J Ginseng Res 2016;40:400-8. https://doi.org/10.1016/j.jgr.2016.03.007
  8. Ge G, Yan Y, Cai H. Ginsenoside Rh2 inhibited proliferation by inducing ROS Mediated ER stress dependent apoptosis in Lung cancer cells. Biol Pharm Bull 2017;40:2117-24. https://doi.org/10.1248/bpb.b17-00463
  9. Shi X, Yang J, Wei G. Ginsenoside 20(S)-Rh2 exerts anti-cancer activity through the Akt/GSK3beta signaling pathway in human cervical cancer cells. Mol Med Rep 2018;17:4811-6.
  10. Ma J, Gao G, Lu H, Fang D, Li L, Wei G, Chen A, Yang Y, Zhang H, Huo J. Reversal effect of ginsenoside Rh2 on oxaliplatin-resistant colon cancer cells and its mechanism. Exp Ther Med 2019;18:630-6.
  11. Liu GW, Liu YH, Jiang GS, Ren WD. The reversal effect of ginsenoside Rh2 on drug resistance in human colorectal carcinoma cells and its mechanism. Hum Cell 2018;31:189-98. https://doi.org/10.1007/s13577-017-0189-3
  12. Kim D, Bach DH, Fan YH, Luu TT, Hong JY, Park HJ, Lee SK. AXL degradation in combination with EGFR-TKI can delay and overcome acquired resistance in human non-small cell lung cancer cells. Cell Death Dis 2019;10:361. https://doi.org/10.1038/s41419-019-1601-6
  13. Axelrod HD, Valkenburg KC, Amend SR, Hicks JL, Parsana P, Torga G, DeMarzo AM, Pienta KJ. AXL is a putative tumor suppressor and dormancy regulator in prostate cancer. Mol Cancer Res 2019;17:356-69. https://doi.org/10.1158/1541-7786.mcr-18-0718
  14. Zhang G, Wang M, Zhao H, Cui W. Function of Axl receptor tyrosine kinase in non-small cell lung cancer. Oncol Lett 2018;15:2726-34.
  15. Ludwig KF, Du W, Sorrelle NB, Wnuk-Lipinska K, Topalovski M, Toombs JE, Cruz VH, Yabuuchi S, Rajeshkumar NV, Maitra A, et al. Small-molecule inhibition of Axl targets tumor immune suppression and enhances chemotherapy in pancreatic cancer. Cancer Res 2018;78:246-55. https://doi.org/10.1158/0008-5472.CAN-17-1973
  16. Uribe DJ, Mandell EK, Watson A, Martinez JD, Leighton JA, Ghosh S, Rothlin CV. The receptor tyrosine kinase AXL promotes migration and invasion in colorectal cancer. PLoS One 2017;12:e0179979. https://doi.org/10.1371/journal.pone.0179979
  17. Divine LM, Nguyen MR, Meller E, Desai RA, Arif B, Rankin EB, Bligard KH, Meyerson C, Hagemann IS, Massad M, et al. AXL modulates extracellular matrix protein expression and is essential for invasion and metastasis in endometrial cancer. Oncotarget 2016;7:77291-305. https://doi.org/10.18632/oncotarget.12637
  18. Song X, Akasaka H, Wang H, Abbasgholizadeh R, Shin JH, Zang F, Chen J, Logsdon CD, Maitra A, Bean AJ, et al. Hematopoietic progenitor kinase 1 downregulates the oncogenic receptor tyrosine kinase AXL in pancreatic cancer. J Biol Chem 2020;295:2348-58. https://doi.org/10.1074/jbc.ra119.012186
  19. Zajac O, Leclere R, Nicolas A, Meseure D, Marchio C, Vincent-Salomon A, Roman-Roman S, Schoumacher M, Dubois T. AXL controls directed migration of mesenchymal triple-negative breast cancer cells. Cells 2020;9:247. https://doi.org/10.3390/cells9010247
  20. Okura N, Nishioka N, Yamada T, Taniguchi H, Tanimura K, Katayama Y, Yoshimura A, Watanabe S, Kikuchi T, Shiotsu S, et al. ONO-7475, a novel AXL inhibitor, suppresses the adaptive resistance to initial EGFR-TKI treatment in EGFR-mutated non-small lung cancer. Clin Cancer Res 2020;26:2244-56. https://doi.org/10.1158/1078-0432.ccr-19-2321
  21. Melaragno MG, Fridell YW, Berk BC. The Gas6/Axl system: a novel regulator of vascular cell function. Trends Cardiovasc Med 1999;9:250-3. https://doi.org/10.1016/S1050-1738(00)00027-X
  22. Tian Y, Zhang Z, Miao L, Yang Z, Yang J, Wang Y, Qian D, Cai H, Wang Y. Anexelekto (AXL) increases resistance to EGFR-TKI and activation of AKT and ERK1/2 in non-small cell lung cancer cells. Oncol Res 2016;24:295-303. https://doi.org/10.3727/096504016X14648701447814
  23. Li J, Shi C, Zhou R, Han Y, Xu S, Ma H, Zhang Z. The crosstalk between AXL and YAP promotes tumor progression through STAT3 activation in head and neck squamous cell carcinoma. Cancer Sci 2020;111:3222-35. https://doi.org/10.1111/cas.14546
  24. Krishnamoorthy GP, Guida T, Alfano L, Avilla E, Santoro M, Carlomagno F, Melillo RM. Molecular mechanism of 17-allylamino-17-demethoxygeldanamycin (17-AAG)-induced AXL receptor tyrosine kinase degradation. J Biol Chem 2013;288:17481-94. https://doi.org/10.1074/jbc.M112.439422
  25. Creighton CJ, Gibbons DL, Kurie JM. The role of epithelial-mesenchymal transition programming in invasion and metastasis: a clinical perspective. Cancer Manag Res 2013;5:187-95. https://doi.org/10.2147/CMAR.S35171
  26. Dunne PD, McArt DG, Blayney JK, Kalimutho M, Greer S, Wang T, Srivastava S, Ong CW, Arthur K, Loughrey M, et al. AXL is a key regulator of inherent and chemotherapy-induced invasion and predicts a poor clinical outcome in early-stage colon cancer. Clin Cancer Res 2014;20:164-75. https://doi.org/10.1158/1078-0432.CCR-13-1354
  27. Abu-Thuraia A, Goyette MA, Boulais J, Delliaux C, Apcher C, Schott C, Chidiac R, Bagci H, Thibault MP, Davidson D, et al. AXL confers cell migration and invasion by hijacking a PEAK1-regulated focal adhesion protein network. Nat Commun 2020;11:3586. https://doi.org/10.1038/s41467-020-17415-x
  28. Terry S, Abdou A, Engelsen AST, Buart S, Dessen P, Corgnac S, Collares D, Meurice G, Gausdal G, Baud V, et al. AXL targeting overcomes human lung cancer cell resistance to NK- and CTL-mediated cytotoxicity. Cancer Immunol Res 2019;7:1789-802. https://doi.org/10.1158/2326-6066.cir-18-0903
  29. Zhou B, Xiao X, Xu L, Zhu L, Tan L, Tang H, Zhang Y, Xie Q, Yao S. A dynamic study on reversal of multidrug resistance by ginsenoside Rh(2) in adriamycin-resistant human breast cancer MCF-7 cells. Talanta 2012;88:345-51. https://doi.org/10.1016/j.talanta.2011.10.051
  30. Xia T, Zhang J, Zhou C, Li Y, Duan W, Zhang B, Wang M, Fang J. 20(S)-ginsenoside Rh2 displays efficacy against T-cell acute lymphoblastic leukemia through the PI3K/Akt/mTOR signal pathway. J Ginseng Res 2020;44:725-37. https://doi.org/10.1016/j.jgr.2019.07.003
  31. Li C, Gao H, Feng X, Bi C, Zhang J, Yin J. Ginsenoside Rh2 impedes proliferation and migration and induces apoptosis by regulating NF-kappaB, MAPK, and PI3K/Akt/mTOR signaling pathways in osteosarcoma cells. J Biochem Mol Toxicol 2020;34:e22597. https://doi.org/10.1002/jbt.22597
  32. Lu JM, Yao Q, Chen C. Ginseng compounds: an update on their molecular mechanisms and medical applications. Curr Vasc Pharmacol 2009;7:293-302. https://doi.org/10.2174/157016109788340767
  33. Lee H, Lee S, Jeong D, Kim SJ. Ginsenoside Rh2 epigenetically regulates cell-mediated immune pathway to inhibit proliferation of MCF-7 breast cancer cells. J Ginseng Res 2018;42:455-62. https://doi.org/10.1016/j.jgr.2017.05.003
  34. Li B, Zhao J, Wang CZ, Searle J, He TC, Yuan CS, Du W. Ginsenoside Rh2 induces apoptosis and paraptosis-like cell death in colorectal cancer cells through activation of p53. Cancer Lett 2011;301:185-92. https://doi.org/10.1016/j.canlet.2010.11.015
  35. Rankin EB, Giaccia AJ. The receptor tyrosine kinase AXL in cancer progression. Cancers (Basel) 2016;8:103. https://doi.org/10.3390/cancers8110103
  36. Zhu C, Wei Y, Wei X. AXL receptor tyrosine kinase as a promising anti-cancer approach: functions, molecular mechanisms and clinical applications. Mol Cancer 2019;18:153. https://doi.org/10.1186/s12943-019-1090-3
  37. Collina F, La Sala L, Liotti F, Prevete N, La Mantia E, Chiofalo MG, Aquino G, Arenare L, Cantile M, Liguori G, et al. AXL is a novel predictive factor and therapeutic target for radioactive iodine refractory thyroid cancer. Cancers (Basel) 2019;11:785. https://doi.org/10.3390/cancers11060785
  38. Cardone C, Blauensteiner B, Moreno-Viedma V, Martini G, Simeon V, Vitiello PP, Ciardiello D, Belli V, Matrone N, Troiani T, et al. AXL is a predictor of poor survival and of resistance to anti-EGFR therapy in RAS wild-type metastatic colorectal cancer. Eur J Cancer 2020;138:1-10. https://doi.org/10.1016/j.ejca.2020.07.010
  39. Goyette MA, Duhamel S, Aubert L, Pelletier A, Savage P, Thibault MP, Johnson RM, Carmeliet P, Basik M, Gaboury L, et al. The receptor tyrosine kinase AXL is required at multiple steps of the metastatic cascade during HER2-positive breast cancer progression. Cell Rep 2018;23:1476-90. https://doi.org/10.1016/j.celrep.2018.04.019
  40. Koopman LA, Terp MG, Zom GG, Janmaat ML, Jacobsen K, Gresnigt-van den Heuvel E, Brandhorst M, Forssmann U, de Bree F, Pencheva N, et al. Enapotamab vedotin, an AXL-specific antibody-drug conjugate, shows preclinical antitumor activity in non-small cell lung cancer. JCI Insight 2019;4:e128199. https://doi.org/10.1172/jci.insight.128199
  41. Bae CA, Ham IH, Oh HJ, Lee D, Woo J, Son SY, Yoon JH, Lorens JB, Brekken RA, Kim TM, et al. Inhibiting the GAS6/AXL axis suppresses tumor progression by blocking the interaction between cancer-associated fibroblasts and cancer cells in gastric carcinoma. Gastric Cancer 2020;23:824-36. https://doi.org/10.1007/s10120-020-01066-4
  42. Lotsberg ML, Wnuk-Lipinska K, Terry S, Tan TZ, Lu N, Trachsel-Moncho L, Rosland GV, Siraji MI, Hellesoy M, Rayford A, et al. AXL targeting abrogates autophagic flux and induces immunogenic cell death in drug-resistant cancer cells. J Thorac Oncol 2020;15:973-99. https://doi.org/10.1016/j.jtho.2020.01.015
  43. Kong L, Lu X, Chen X, Wu Y, Zhang Y, Shi H, Li J. Qigesan inhibits esophageal cancer cell invasion and migration by inhibiting Gas6/Axl-induced epithelial-mesenchymal transition. Aging (Albany NY) 2020;12:9714-25. https://doi.org/10.18632/aging.103238
  44. Liu X, Song M, Wang P, Zhao R, Chen H, Zhang M, Shi Y, Liu K, Liu F, Yang R, et al. Targeted therapy of the AKT kinase inhibits esophageal squamous cell carcinoma growth in vitro and in vivo. Int J Cancer 2019;145:1007-19. https://doi.org/10.1002/ijc.32285
  45. Chang F, Lee JT, Navolanic PM, Steelman LS, Shelton JG, Blalock WL, Franklin RA, McCubrey JA. Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: a target for cancer chemotherapy. Leukemia 2003;17:590-603. https://doi.org/10.1038/sj.leu.2402824
  46. Yan HZ, Wang HF, Yin Y, Zou J, Xiao F, Yi LN, He Y, He BS. GHR is involved in gastric cell growth and apoptosis via PI3K/AKT signalling. J Cell Mol Med 2021;25:2450-8. https://doi.org/10.1111/jcmm.16160
  47. Li Y, Jia L, Ren D, Liu C, Gong Y, Wang N, Zhang X, Zhao Y. Axl mediates tumor invasion and chemosensitivity through PI3K/Akt signaling pathway and is transcriptionally regulated by slug in breast carcinoma. IUBMB Life 2014;66: 507-18. https://doi.org/10.1002/iub.1285
  48. Han Y, Peng Y, Fu Y, Cai C, Guo C, Liu S, Li Y, Chen Y, Shen E, Long K, et al. MLH1 deficiency induces cetuximab resistance in colon cancer via Her-2/PI3K/AKT signaling. Adv Sci 2020;7:2000112. https://doi.org/10.1002/advs.202000112
  49. Nunnery SE, Mayer IA. Targeting the PI3K/AKT/mTOR pathway in hormone-positive breast cancer. Drugs 2020;80:1685-97. https://doi.org/10.1007/s40265-020-01394-w
  50. Akbari Dilmaghani N, Safaroghli-Azar A, Pourbagheri-Sigaroodi A, Bashash D. The PI3K/Akt/mTORC signaling axis in head and neck squamous cell carcinoma: possibilities for therapeutic interventions either as single agents or in combination with conventional therapies. IUBMB Life 2021;73:618-42. https://doi.org/10.1002/iub.2446
  51. Miricescu D, Totan A, Stanescu-Spinu II, Badoiu SC, Stefani C, Greabu M. PI3K/AKT/mTOR signaling pathway in breast cancer: from molecular landscape to clinical aspects. Int J Mol Sci 2020;22:173. https://doi.org/10.3390/ijms22010173
  52. Baumann C, Ullrich A, Torka R. Torka GAS6-expressing and self-sustaining cancer cells in 3D spheroids activate the PDK-RSK-mTOR pathway for survival and drug resistance. Mol Oncol 2017;11:1430-47. https://doi.org/10.1002/1878-0261.12109
  53. Kim HIe, Lee HS, Kim TH, Lee JS, Lee ST, Lee SJ. Growth-stimulatory activity of TIMP-2 is mediated through c-Src activation followed by activation of FAK, PI3-kinase/AKT, and ERK1/2 independent of MMP inhibition in lung adenocarcinoma cells. Oncotarget 2015;6:42905-22. https://doi.org/10.18632/oncotarget.5466
  54. Lei J, Ingbar DH. Src kinase integrates PI3K/Akt and MAPK/ERK1/2 pathways in T3-induced Na-K-ATPase activity in adult rat alveolar cells. Am J Physiol Lung Cell Mol Physiol 2011;301:L765-71.
  55. Liu H, Wu Y, Zhu S, Liang W, Wang Z, Wang Y, Lv T, Yao Y, Yuan D, Song Y. PTP1B promotes cell proliferation and metastasis through activating src and ERK1/2 in non-small cell lung cancer. Cancer Lett 2015;359:218-25. https://doi.org/10.1016/j.canlet.2015.01.020
  56. Song RX, Zhang Z, Santen RJ. Estrogen rapid action via protein complex formation involving ERalpha and Src. Trends Endocrinol Metab 2005;16:347-53. https://doi.org/10.1016/j.tem.2005.06.010
  57. Yeung KT, Yang J. Epithelial-mesenchymal transition in tumor metastasis. Mol Oncol 2017;11:28-39. https://doi.org/10.1002/1878-0261.12017
  58. De Craene B, Berx G. Regulatory networks defining EMT during cancer initiation and progression. Nat Rev Cancer 2013;13:97-110. https://doi.org/10.1038/nrc3447
  59. Vuoriluoto K, Haugen H, Kiviluoto S, Mpindi JP, Nevo J, Gjerdrum C, Tiron C, Lorens JB, Ivaska J. Vimentin regulates EMT induction by Slug and oncogenic H-Ras and migration by governing Axl expression in breast cancer. Oncogene 2011;30:1436-48. https://doi.org/10.1038/onc.2010.509
  60. Lv DL, Chen L, Ding W, Zhang W, Wang HL, Wang S, Liu WB. Ginsenoside G-Rh2 synergizes with SMI-4a in anti-melanoma activity through autophagic cell death. Chin Med 2018;13:11. https://doi.org/10.1186/s13020-018-0168-y