Browse > Article
http://dx.doi.org/10.4014/jmb.2204.04009

Metagenome-Assembled Genomes of Komagataeibacter from Kombucha Exposed to Mars-Like Conditions Reveal the Secrets in Tolerating Extraterrestrial Stresses  

Lee, Imchang (Department of Life Science, Multidisciplinary Genome Institute, Hallym University)
Podolich, Olga (Institute of Molecular Biology and Genetics of NASU)
Brenig, Bertram (Institute of Veterinary Medicine, Burckhardtweg, University of Gottingen)
Tiwari, Sandeep (Departamento de Genetica, Ecologia e Evolucao, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais)
Azevedo, Vasco (Departamento de Genetica, Ecologia e Evolucao, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais)
de Carvalho, Daniel Santana (Molecular and Computational Biology of Fungi Laboratory, Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais)
Uetanabaro, Ana Paula Trovatti (Molecular and Computational Biology of Fungi Laboratory, Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais)
Goes-Neto, Aristoteles (Molecular and Computational Biology of Fungi Laboratory, Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais)
Alzahrani, Khalid J. (Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University)
Reva, Oleg (Centre for Bioinformatics and Computational Biology, Department of Biochemistry, Genetics and Microbiology, University of Pretoria)
Kozyrovska, Natalia (Institute of Molecular Biology and Genetics of NASU)
de Vera, Jean-Pierre (Microgravity User Support Center (MUSC), German Aerospace Center (DLR))
Barh, Debmalya (Departamento de Genetica, Ecologia e Evolucao, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais)
Kim, Bong-Soo (Department of Life Science, Multidisciplinary Genome Institute, Hallym University)
Publication Information
Journal of Microbiology and Biotechnology / v.32, no.8, 2022 , pp. 967-975 More about this Journal
Abstract
Kombucha mutualistic community (KMC) is composed by acetic acid bacteria and yeasts, producing fermented tea with health benefits. As part of the BIOlogy and Mars EXperiment (BIOMEX) project, the effect of Mars-like conditions on the KMC was analyzed. Here, we analyzed metagenome-assembled genomes (MAGs) of the Komagataeibacter, which is a predominant genus in KMC, to understand their roles in the KMC after exposure to Mars-like conditions (outside the International Space Station) based on functional genetic elements. We constructed three MAGs: K. hansenii, K. rhaeticus, and K. oboediens. Our results showed that (i) K. oboediens MAG functionally more complex than K. hansenii, (ii) K. hansenii is a keystone in KMCs with specific functional features to tolerate extreme stress, and (iii) genes related to the PPDK, betaine biosynthesis, polyamines biosynthesis, sulfate-sulfur assimilation pathway as well as type II toxin-antitoxin (TA) system, quorum sensing (QS) system, and cellulose production could play important roles in the resilience of KMC after exposure to Mars-like stress. Our findings show the potential mechanisms through which Komagataeibacter tolerates the extraterrestrial stress and will help to understand minimal microbial composition of KMC for space travelers.
Keywords
Kombucha; Komagataeibacter; metagenome assembled genome; mars-like condition; whole metagenome;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Yamaguchi Y, Park J-H, Inouye M. 2011. Toxin-antitoxin systems in bacteria and archaea. Annu. Rev. Genet. 45: 61-79.   DOI
2 Schneider J, Wendisch VF. 2011. Biotechnological production of polyamines by bacteria: recent achievements and future perspectives. Appl. Microbiol. Biotechnol. 91: 17-30.   DOI
3 Mendoza-Cozatl D, Loza-Tavera H, Hernandez-Navarro A, Moreno-Sanchez R. 2005. Sulfur assimilation and glutathione metabolism under cadmium stress in yeast, protists and plants. FEMS Microbiol. Rev. 29: 653-671.   DOI
4 Arikan M, Mitchell AL, Finn RD, Gurel F. 2020. Microbial composition of Kombucha determined using amplicon sequencing and shotgun metagenomics. J. Food Sci. 85: 455-464.   DOI
5 Villarreal-Soto SA, Bouajila J, Pace M, Leech J, Cotter PD, Souchard J-P, et al. 2020. Metabolome-microbiome signatures in the fermented beverage, Kombucha. Int. J. Food Microbiol. 333: 108778.   DOI
6 Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. 2015. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25: 1043-1055.   DOI
7 Jayabalan R, Malbasa RV, Loncar ES, Vitas JS, Sathishkumar M. 2014. A review on kombucha tea - microbiology, composition, fermentation, beneficial effects, toxicity, and tea fungus. Compr. Rev. Food Sci. Food Saf. 13: 538-550.   DOI
8 Bray JR, Curtis JT. 1957. An ordination of the upland forest communities of southern Wisconsin. Ecol. Monogr. 27: 326-349.
9 Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9: 357-359.   DOI
10 Lee I, Kim YO, Park S-C, Chun J. 2016. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int. J. Syst. Evol. Microbiol. 66: 1100-1103.   DOI
11 Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30: 2068-2069.   DOI
12 Ng W-L, Bassler BL. 2009. Bacterial quorum-sensing network architectures. Annu. Rev. Genet. 43: 197-222.   DOI
13 Solano C, Echeverz M, Lasa I. 2014. Biofilm dispersion and quorum sensing. Curr. Opin. Microbiol. 18: 96-104.   DOI
14 Erental A, Sharon I, Engelberg-Kulka H. 2012. Two programmed cell death systems in Escherichia coli: an apoptotic-like death is inhibited by the mazEF-mediated death pathway. PLoS Biol. 10: e1001281.   DOI
15 Goes-Neto A, Kukharenko O, Orlovska I, Podolich O, Imchen M, Kumavath R, et al. 2021. Shotgun metagenomic analysis of kombucha mutualistic community exposed to mars-like environment outside the international space station. Environ. Microbiol. 23: 3727-3742.   DOI
16 Gomes RJ, Borges MdF, Rosa MdF, Castro-Gomez RJH, Spinosa WA. 2018. Acetic acid bacteria in the food industry: systematics, characteristics and applications. Food Technol. Biotechnol. 56: 139-151.
17 Ramachandran S, Fontanille P, Pandey A, Larroche C. 2006. Gluconic acid: properties, applications and microbial production. Food Technol. Biotechnol. 44: 185-195.
18 Banerjee S, Schlaeppi K, van der Heijden MG. 2018. Keystone taxa as drivers of microbiome structure and functioning. Nat. Rev. Microbiol. 16: 567-576.   DOI
19 Podolich O, Kukharenko O, Haidak A, Zaets I, Zaika L, Storozhuk O, et al. 2019. Multimicrobial kombucha culture tolerates marslike conditions simulated on low earth orbit. Astrobiology 19: 183-196.   DOI
20 Beghini F, McIver LJ, Blanco-Miguez A, Dubois L, Asnicar F, Maharjan S, et al. 2021. Integrating taxonomic, functional, and strainlevel profiling of diverse microbial communities with bioBakery 3. Elife 10: e65088.   DOI
21 Lee I, Barh D, Podolich O, Brenig B, Tiwari S, Azevedo V, et al. 2021. Metagenome-assembled genome sequences obtained from a reactivated Kombucha microbial community exposed to a Mars-like environment outside the International Space Station. Microbiol. Resour. Announc. 10: e00549-00521.
22 Rutherford ST, Bassler BL. 2012. Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb. Perspect. Med. 2: a012427.
23 Zhang S, Bryant DA. 2011. The tricarboxylic acid cycle in cyanobacteria. Science 334: 1551-1553.   DOI
24 Kawano Y, Suzuki K, Ohtsu I. 2018. Current understanding of sulfur assimilation metabolism to biosynthesize L-cysteine and recent progress of its fermentative overproduction in microorganisms. Appl. Microbiol. Biotechnol. 102: 8203-8211.   DOI
25 Cushman JC, Bohnert HJ. 1999. Crassulacean acid metabolism: molecular genetics. Annu. Rev. Plant Biol. 50: 305-332.   DOI
26 Osmond C. 1978. Crassulacean acid metabolism: a curiosity in context. Annu. Rev. Plant Physiol. 29: 379-414.   DOI
27 Kerovuo J, Reinikainen T, Nyysso?la? A, Kaukinen P, von Weymarn N. 2000. Extreme halophiles synthesize betaine from glycine by methylation. J. Biol. Chem. 275: 22196-22201.   DOI
28 Smith LT, Pocard J-A, Bernard T, Le Rudulier D. 1988. Osmotic control of glycine betaine biosynthesis and degradation in Rhizobium meliloti. J. Bacteriol. 170: 3142-3149.   DOI
29 Shah P, Swiatlo E. 2008. A multifaceted role for polyamines in bacterial pathogens. Mol. Microbiol. 68: 4-16.   DOI
30 Kruskal JB. 1964. Nonmetric multidimensional scaling: a numerical method. Psychometrika 29: 115-129.   DOI
31 Dixon P. 2003. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14: 927-930.   DOI
32 Li D, Liu C-M, Luo R, Sadakane K, Lam T-W. 2015. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31: 1674-1676.   DOI
33 Menzel P, Ng KL, Krogh A. 2016. Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat. Commun. 7: 11257.   DOI
34 Shakya M, Ahmed SA, Davenport KW, Flynn MC, Lo C-C, Chain PS. 2020. Standardized phylogenetic and molecular evolutionary analysis applied to species across the microbial tree of life. Sci. Rep. 10: 1723.   DOI
35 Dufresne C, Farnworth E. 2000. Tea, Kombucha, and health: a review. Food Res. Int. 33: 409-421.   DOI
36 Greenwalt C, Steinkraus K, Ledford R. 2000. Kombucha, the fermented tea: microbiology, composition, and claimed health effects. J. Food Prot. 63: 976-981.   DOI
37 Eren AM, Esen OC, Quince C, Vineis JH, Morrison HG, Sogin ML, et al. 2015. Anvi'o: an advanced analysis and visualization platform for 'omics data. PeerJ 3: e1319.   DOI
38 Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. 2009. BLAST+: architecture and applications. BMC Bioinformatics 10: 421.   DOI
39 Sayers EW, Agarwala R, Bolton EE, Brister JR, Canese K, Clark K, et al. 2019. Database resources of the national center for biotechnology information. Nucleic Acids Res. 47: D23-D28.   DOI
40 Kanehisa M, Sato Y, Morishima K. 2016. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J. Mol. Biol. 428: 726-731.   DOI
41 Papudeshi B, Haggerty JM, Doane M, Morris MM, Walsh K, Beattie DT, et al. 2017. Optimizing and evaluating the reconstruction of Metagenome-assembled microbial genomes. BMC Genomics 18: 915.   DOI
42 Monobe M, Uzawa A, Hino M, Ando K, Kojima S. 2005. Glycine betaine, a beer component, protects radiation-induced injury. J. Radiat. Res. 46: 117-121.   DOI