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Abstract

Objective : To summarize clinical and demographic variables and machine learning uses for predicting functional
outcomes of patients with stroke.

Methods : We searched PubMed, CINAHL and Web of Science to identify published articles from 2010 to 2021.
The search terms were ‘machine learning OR data mining AND stroke AND function OR prediction OR/AND
rehabilitation”. Articles exclusively using brain imaging techniques, deep learning method and articles without
available full text were excluded in this study.

Results : Nine articles were selected for this study. Support vector machines (19.05%) and random forests (19.05%)
were two most frequently used machine learning models. Five articles (55.56%) demonstrated that the impact
of patient initial and/or discharge assessment scores such as modified ranking scale (mRS) or functional
independence measure (FIM) on stroke patients functional outcomes was higher than their clinical
characteristics.

Conclusions : This study showed that patient initial and/or discharge assessment scores such as mRS or FIM
could influence their functional outcomes more than their clinical characteristics. Evaluating and reviewing
initial and or discharge functional outcomes of patients with stroke might be required to develop the optimal

therapeutic interventions to enhance functional outcomes of patients with stroke.
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I. Introduction

Strokes are the most common cause of decreased
motor and cognitive function (Ward, 2017).
Decreased motor functions are affected by motor
performance skills and client factors due to a
spasticity, limited range of motion, and lack of
muscle power (Korpershoek et al., 2011). Stroke
causes damage to the cerebral structures responsible
for cognitive functions, so cognitive functions such
as attention, memory, and problem-solving function
are impaired (Al-Qazzaz et al., 2014; Caro et al,
2018). These problems impede the patients from
returning to their regular routines, such as activities
of daily living, work, social participation, sleep, and
leisure (Mercier et al., 2001).

Health professionals—such as doctors, nurses,
physical therapists, and occupational therapists—
are involved in helping stroke patients lead
independent lives again (Clarke & Forster, 2015).
This process includes stroke patient admission
to the hospital and return to the community
post discharge. After acute care is complete,
stroke patients who have dysfunction focus on
rehabilitation (Young & Forster, 2007). Accurate
evaluation and evidence-based interventions
are required to maximize the effectiveness of
rehabilitation (Dworzynski et al.,, 2015). The accurate
assessment requires participant evaluation through
a reliable, valid assessment tool (Dworzynski et al.,
2015). Also, to provide evidence-based interventions,
it is necessary to establish an appropriate
intervention plan for the participants, based on
assessment and clinical research (Platz, 2019).

Predicting a stroke patient's function can provides

assistance in their rehabilitation, such as goal setting

and intervention planning (Iwamoto et al., 2020).
Several studies predicting function in stroke patients
have suggested that these advantages are the
purpose of the study. Based on predicted function,
health care professionals such as occupational
therapists, physical therapists, and speech therapists
set short-term and long-term goals for stroke
patients and plan interventions to achieve them (Heo
et al., 2019). This may increase the motivation of
stroke patients and improve their understanding of
the intervention process (Siegert & Taylor, 2004).
It can also be used to educate patients' families
and caregivers based on predicted functions. This
training includes suggestions for home modifications
and aids to use when returning home after discharge
(Cheong et al., 2020).

Previously, data-based studies have been
conducted to analyze factors that are positively
related to functional recovery in stroke participants
using correlation and regression analysis (Elloker
et al., 2019; Maso et al., 2019). However, the use
of machine learning (ML), a methodology that
effectively analyzes this and effectively understands
patterns of vast amounts of data, has been
prominent due to the recent increase in the amount
and quality of data. ML is an area of computer
engineering wherein a computer learns data and
derives results based on it; it is the core technology
of the 4th industrial revolution (Jordan & Mitchell,
2015). More complicated ML (i.e. decision tree (DT),
random forest (RF), support vector machine (SVM)
and classification and regression tree (CART)) can
compensate for correlation and regression analysis's
shortcomings. ML can explain and predict complex
social phenomena based on data (Stylianou et al.,

2015; Ij, 2018). Regression analysis can analyze the
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change of the dependent variable according to the
change of the main independent variable, but it fits
the data to a mathematical regression formula, and
in the case of a nonlinear ML model, the average
out occurs (Stylianou et al., 2015; Woo et al., 2019).
In addition, traditional statistical approaches such
as correlation and regression analysis should meet
statistical assumptions in order to be applied (j,
2018). However, since non-parametric ML method
has the advantage of exploring patterns in given data
and analyzing trends even if statistical assumptions
are not met. Also, ML can extract important
characteristics among various characteristics of
objects and build a model that can predict and
classify dependent variables set by researchers.
Recently, studies have been conducted to predict
the function of stroke patients by applying various
ML-based algorithms such as regression analysis,
decision trees, and ensemble models (Harari et al.,
2020; Lin et al., 2018; Sirsat et al., 2020). It is used
to predict and explain dependent variables such
as functions at the time of discharge of stroke
participants by extracting important features among
various variables such as demographic, social
psychological, physical, and cognitive functions.
These studies can provide health professionals with
additional information necessary for the treatment
and rehabilitation of stroke participants. Therefore,
our study aimed to systematically review studies
that applied ML methods to predict the function
of stroke participants. Through this study, we
derive and summarize used ML algorithms,
evaluation methods, variables, and selected feature
importance for predicting patient functions used in

the study.

. Methods

1. Search strategy

We employed PubMed, CINAHL and Web of
Science (WoS) to review literature. We used the
keywords “machine learning OR data mining AND
stroke AND function OR prediction OR/AND
rehabilitation” on three database. The search
keywords and database were decided by two

researcher.

2. Eligibility criteria

The inclusion and exclusion criteria were
determined by two researchers. The inclusion
criteria were as follows: first, participants should
suffer from a stroke or cerebrovascular accident.
Second, articles should predict the physical or
cognitive function of subjects using ML algorithms
(ie, DT, SVM, and CART). We follow to the reference
their definition in ML selection for this study (Sirsat
et al.,, 2020). Third, the articles should be published
between 2010 and February 2021. The exclusion
criteria were as follows: first, articles using only
brain imaging techniques. Second, articles use only
the deep learning method. Third, review, thesis, or
dissertation article. Four, articles without available
full texts. Fifth, articles not written the Korean or
English.

3. Study selection

Two researchers were independently involved and
performed in this process, and disagreements were

resolved through discussions. All searched articles
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Figure 1. Search Process

were registered during the screening process.
Subsequently, duplicate articles were removed.
Then, the abstracts were reviewed, and the papers
were screened based on the inclusion and exclusion

criteria (Figure 1).

4. Data extraction

We summarized the selected articles with the
characteristics of a study (authors, research field of
authors, objective), participant information (sample
size, type of stroke), ML characteristics (used ML
algorithm, method of evaluation and value of
performance such as the area under the receiver
operating characteristic curve (AUC) or accuracy);

independent and dependent variables; and selected

feature importance for prediction outcomes. The
feature importance is a function of machine learning
that extracts the most important variable among
used all variables when predicting dependent
variables. The feature importance indicates the
magnitude of variables on outcome prediction, so
this study extracted and presented the top 5

important features among each article.

5. Reporting quality assessment

We did not assess the quality of the studies and
risk of bias because our research aimed to describe
the algorithms, methods of evaluation, and used
variables. Instead, we followed the reporting quality

assessment through the adjusted transparent
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reporting of a multivariable prediction model
for individual prognosis or diagnosis (TRIPOD) as
reported Wang et al. (2020). The adjusted TRIPOD
checklist was developed for regression modeling. In
the study by Wang et al. (2020), an adjusted term
specifically for ML: 10a was presented as a specific
type of model and 15a was presented as the full

prediction model.

IIl. Results

The results of the search process are shown in
Figure 1. Numerous articles were found by searching
for articles using key terms. First, we searched for
articles in PubMed, CINAHL and WoS using the
search terms. We found articles (PubMed=5,684,
CINAHL=84, Wo0S=100). Next, we removed duplicate
articles (n=48) and excluded the criteria (17=5,780).
The two researchers read the full-text article (#=40)
and excluded the articles that did not meet the
inclusion criteria (n=31) (Figure 1). Finally, we

selected and analyzed nine studies.

1. Independent and dependent variables

The independent and dependent variables used
are presented in Table 1. The independent variables
were divided into two groups. One of them was
demographic and clinical characteristics (e.g., age,
history of previous disease, body mass index,
medication, stroke subtype, and laboratory findings).
And the other are initial or discharge assessment tool
score (e.g., modified ranking scale (mRS score), grip
strength, functional independence measure (FIM)

score). The dependent variables were divided into

two groups, the prediction of participant mortality
(Scrutinio et al., 2020), that of long-term outcomes
or discharge assessment score (e.g., 90-day
functional impairment risk, 90-day stroke outcome,
toileting independence), function of daily routine of
participants at discharge (e.g., self-care activities,

Barthel index score and mRS score).

2. Important features for prediction

function

Each article reported the selected features’
importance among independent variables for the
prediction function presented in Table 1. Among the
selected articles, the seven articles were reported
feature importance. The Lin et al. (2018) study found
that motor activity log (MAL), mRS, instrumental
activities of daily living (IADL) function, concise
Chinese aphasia test (CCAT), Barthel index (BI) score
was selected important feature for predicting BI
score at discharge in stroke patient. The Lin et al.
(2020) study reported that the selected feature to
predict the 90-day outcome was initial 30-day mRS
and discharge BI score. For toileting independence
in discharge of stroke patient, the mRS, age, FIM
score, independence degree, whether rehabilitation
doctor was certified was selected as importance
feature (Imura et al.,, 2021). The Iwamoto et al. (2020)
study presented that the important feature to predict
the mRS score at discharge was transfer to bed,
chair, wheelchair score of FIM, transfer to the toilet
score of FIM, and a bathing score of FIM. In the study
by Scrutinio et al. (2020), he selected feature
importance to predict three-years mortality in
stroke patients was the demographic and clinical

characteristics such as age, length of follow-up,
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CMG group, time between stroke onset and
rehabilitation admission, overall FIM. On the hand,
Alaka et al. (2020) study showed demographic and
clinical characteristics such as age, systolic blood
pressure (SBP), glucose, diastolic blood pressure
(DBP) was selected for predicting the 90-day mRS

in stroke patient.

3. Machine learning algorithm

Table 2 presents the ML algorithm used. Twelve-
one supervised ML algorithms were used. Among
them, SVM (19.05%) and random forests (19.05%)
were used most frequently. Followed by, logistic
regression (9.52%), LASSO regression (9.52%) and
CART were used for function prediction in stroke

participants. The following algorithms were used

Table 2. Machine Learning Algorithms Used for
Classification/Prediction

ML algorithms Frequency (%)

Support vector machine 4 (19.05)
Artificial neural networks 1 (4.76)
Classification and regression tree 2 (9.52)
Decision tree 1 (4.76)
Random forest 4 (19.05)
Deep neural network 1 (4.76)
Logistic regression 2 (9.52)
Lasso regression 2 (9.52)
AdaBoost 1 (4.76)
Linear regression 1 (4.76)
Gradient boosting 1 (4.76)
C'hi-squa.red autorr?atic 1 (476)
interaction detection
Total 21 (100)

ML=Machine Learning

once (4.76%): artificial neural networks (ANN),
DT, deep neural network (DNN), Adaboost, linear
regression, gradient boosting and chi-squared

automatic interaction detection (CHAID) (Table 2).

4. Evaluation methods of machine

learning algorithm used

Thirteen evaluation methods were used for the
performance test of the ML used. Table 1 presents
the method used. Seven articles used the area under
the receiver operating characteristic curve (AUC)
(28%), that is most frequently used for evaluating
prediction model. Followed by the sensitivity was

used each three articles (12%).

5. Prediction performance of ML

algorithms

Table 3 presents the result of performance in each
ML algorithm. This result was prepared based on
AUC, and the mean absolute error (MAE) and
accuracy of the two articles that did not use AUC
were described. Among the seven articles using
AUC, two articles used a single machine learning
algorithm, and the other articles used various
machine learning algorithms to
performance based on AUC. Lin et al. (2018), Lin
et al. (2020), and Alaka et al. (2020)'s study have

presented the result of research that the

compare

performance of SVM was better than other ML
algorithms. Heo et al. (2019)'s study presented deep
neural network (DNN) as a better performance ML
algorithm among RF, logistic regression (LR), and
DNN, and Scrutinio et al. (2020)'study presented RF
and gradient boosting (GB) as algorithms with good
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Table 3. The Result of Performance in Each Machine Learning Algorithms

Study ML algorithm Predictive performance
IR 0.76 (0.73-0.78)
Lin et al. (2018) RF 0.77 (0.71-0.82)
SVM 0.78 (0.75-0.81)
RF 0.70 (0.66-0.75)
SVM 0.71 (0.65-0.75)
C5.0 0.66 (0.63-0.72)
Alaka et al. (2020) ABM 0.67 (0.65-0.73)
CART 069 (0.64-0.73)
IR 0.69 (0.65-0.73)
LASSO 067 (0.60-0.73)
DNN 0.89 (0.87-0.90)
Heo et al. (2019) RF 0.86 (0.84-0.88)
IR 085 (0.83-0.87)
For FIM 7.6
X For TMWT 0.26
Harari et al. (2020) LASSO
For 6MWT 73.2
For BBS 6.4
RF 0.93 (0.90-0.95)
Scrutinio et al. (2020) GB 0.93 (0.90-0.95)
ADA-B 0.91 (0.88-0.94)
For eating 0.71£0.04
For grooming 0.77£0.03
Suzuki et al. (2020) syM” For dressing the upper body 0.75+£0.03
For dressing the lower body 0.72£0.05
For bathing 0.68+0.03
For ischemic stroke 0.97
ANN
For hemorrhagic stroke 0.96
L et al. 2020) - For ischemic stroke 0.96
For hemorrhagic stroke 0.97
For ischemic stroke 0.97
SVM
For hemorrhagic stroke 0.97
Imura et al. (2021) CHAID 0.80 (0.77-0.83)
Iwamoto et al. (2020) CART 0.83 (0.80-0.86)

"The value is mean absolute error (MAE); “The value is accuracy; ABM= Adaptive Boost Machine; ADA-B= ADA-Boost; ANN= Artificial Neural
Network; AUC= the Area Under the receiver operating characteristic Curve; BBT= Box and Block Test: CHAID= Chi-squared Automatic Interaction
Detection; CART= Classification and Regression Tree: C5.0= C5.0 decision tree; DNN= Deep Neural Network; FIM= Functional Independence
Measure; GB= Gradient Boosting; LASSO= Least Absolute Shrinkage and Selection Operation; LR= Logistic Regression; RF= Random Forest; SVM=
Support Vector Machine; TMWT= Ten-Meter Walk Test; 6WMT= Six-Min Walk Test
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prediction performance than other ML algorithms.

6. Quality assessment

Thirty-one checklists were assessed for each
study. The clear definition of outcome (6a), blind
assessment of the outcome (6b), blind assessment of
the predictors (7b), method of missing data (9),
description of predictors handled (10a), provides

details on risk group (11), unadjusted association

Iwamoto et al. 2020
Imura et al. 2021
Linetal 2018

Heo at al. 2019
Sukuki et al. 2020
Linet al. 2020
Scrutinio et al. 2020

Harari et al. 2020

Alaka et al. 2020

between predictor and outcome (14b), and
presentation of the full prediction model were
unreported in almost all studies. However, other
checklists have been reported in most articles
(Figure 2).

7. Affiliation and department of authors

Table 4 presents the affiliation and department

of the first author of each article. Among the nine

0 1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20 21

=)
2
e}
[~}

24 25

ENo ®Yes

Figure 2. Number of Criteria Reported in Each Article

Table 4. The Information of the First Author in Each Article

Study Information of first author
Affiliation University
Lin et al. (2018)

Department Physical medicine & rehabilitation, Information management
Affiliation University

Alaka et al. (2020)
Department Community health sciences
Affiliation University

Heo et al. (2019)
Department Neurology
Affiliation University

Harari et al. (2020)
Department Physical medicine & rehabilitation
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Table 4. The Information of the First Author in Each Article

(Continued)

Study Information of first author

Affiliation Research institute

Scrutinio et al. (2020)
Department Cardioangiology rehabilitation
Affiliation University

Suzuki et al. (2020)
Department Health sciences
Affiliation National institutes

Lin et al. (2020)
Department Information technology, Bioinformatics
Affiliation University
Imura et al. (2021)

Department Rehabilitation
Affiliation Hospital

Iwamoto et al. (2020)
Department Rehabilitation

studies, Lin et al., (2018), Harari et al., (2020), and
Heo et al., (2019) had at least one first author. The
first author of Lin et al., (2018) was three people,
one majoring in Physical Medicine & Rehabilitation,
and the other two majors in information
management. The first author of Heo et al. (2019)
study was two people, with the same affiliation and
department. Also, the first author of Harari et al.
(2020) study was two people, with the same
affiliation and department. Most of the first authors
belonged to the university, other than the national

institute and hospitals.

IV. Discussion

We systematically reviewed the studies applying
ML methods to predict functionality recovery in
stroke patients. Through this study, we attempted to
summarize the information obtained by applying ML
and to suggest its utilization. Nine articles were
selected for analysis. The results of this study were

obtained by summarizing the independent and

dependent variables used to predict the functional
recovery in stroke patients, importance of the
variables, types of ML algorithms, methods of ML
algorithm evaluation, predictive performance and
research field of authors.

Through this study, we derive the result that one
of the most frequently used ML algorithms to predict
the function of stroke patients is random forest.
Random forest is based on a decision tree model and
has an advantage in explanatory power over other
ML algorithms (Byeon, 2020; Schonlau & Zou, 2020).
The random forest shapes a rule-based tree to
produce results that can explain a group of
predictors. In addition, when establishing a
predictive model, it shows important features to
distinguish predictors by extracting the most
important features among variables. A study by
Imura et al. (2021) shows that ML studies can provide
beneficial information for clinicians (Imura et al.,
2021). Through the decision tree presented in Imura
el al. (2021)'s study, important variables and criteria
can be understood to predict toilet independence in

stroke patients. Through the development of a model
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of the random forest algorithm, occupational
and physical therapy clinicians can understand
the demographic characteristics of the group of
predictors, the state of psychosocial factors, and the
functional state. In addition, it is possible to
recognize which variables have a large impact to
predict functional recovery in stroke patients and
apply them to rehabilitation intervention plans.
In this study, we extracted the variables that are
the most important when predicting the prognosis
of stroke patients in seven out of nine selected
articles. Five of seven articles reported that the
assessment score was more important than the
clinical characteristics of stroke patients. When
the rehabilitation process begins, occupational
or physical therapists first evaluate stroke
patients' function(American Occupational Therapy
Association, 2020). These initial assessment scores
can help therapists understand the patients and can
also provide assistance in predicting prognosis, as
in the results of this study. This represents the
importance of the initial assessment and further
extends the utilization of the assessment scores.
Another major purpose of ML is to create models
with high predictive performance. In ML, the
algorithm with the better predictive performance
among various algorithms is selected as the final
through the the
cross-validation method (Singh et al., 2016). Among

the studies using one or more ML algorithms selected

model data partition or

in this study, the models with the highest predictive
performance were SVM and RF. Lin et al. (2018) and
Alaka et al. (2020)'s studies presented a better
predictive performance of RF and SVM than LR. Also,
Heo et al. (2019)'s study showed good predictive

performance of RF than LR, a traditional statistical

method. The goal of an SVM is to find the best
hyperplane to classify data patterns and to achieve
the goal by choosing from a set of hyperplanes that
maximize the distance between the hyperplanes and
the closest data (Meyer & Wien, 2001; Jakkula, 2000).
SVM is one of the algorithms with good predictive
power in ML. except for ensemble models, and has
the advantage of being able to apply whether the
dependent variable is continuous or categorical
(Jakkula, 2006; Son et al., 2010). RF is an ensemble
model based on a DT, and as described above, it
is an algorithm with good predictive performance.
The reason that RF is an algorithm with excellent
predictive power is that it extracts data through
bootstrap sampling and creates and combines a
variable number of decision trees (Byeon, 2020;
Schonlau & Zou, 2020). These results will serve as
a basis for using SYM and RF to predict the prognosis
or functional outcome of patients with stroke or
other diseases using ML.

Rehabilitation professionals identify a problem
encountered by a participant and provide evidence-
based intervention to enhance their remaining
function (Clarke & Forster, 2015). They evaluated
the participant function in the first session of
occupational or physical therapy and established
intervention goals and plans (American Occupational
Therapy Association, 2020). By using ML to predict
stroke patient function, based on their assessment
scores, occupational or physical therapists can
plan interventions by considering the predicted
functionality. Further, if the participant function
improves with progress, ML will be able to predict
the function again and modify the goal accordingly.
studies

Previous have predicted functional

outcomes and quality of life after intervention
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through ML based on demographic, clinical, and
neurophysiological data before intervention in
stroke patients, and reported high predictive
performance (Tozlu et al., 2020; Liao et al., 2022).
These findings imply that appropriate interventions
can be planned by targeting the functional outcomes
after intervention predicted by information from
pre-intervention stroke patients. Setting goals is an
important process in rehabilitation programs for
stroke patients (Lin et al., 2020). Target arbitration
based on goal setting not only increases the
rehabilitation effectiveness of the participants but
also accelerates improvements to the participant
functionality (Fishman et al., 2021; Siegert & Taylor,
2004). If this process is repeated, it can provide
optimal rehabilitation for patients suffering from

stroke patient.

1. Limitations of the study

The studies that reported intervention effects
via ML articles were excluded. The purpose of
the study was to systematically analyze the study
that predicted functional recovery based on the
demographic characteristics and assessment scores
of stroke patients. Since the types and application
methods of intervention vary, the process of
systematic analysis and the method of presenting
results were in a different direction from the purpose
of this study, so this should be discussed through

future research.

V. Conclusion

We analyzed research that predicted the function

of stroke patients using ML. Consequently, we
selected nine articles for analysis. Based on
them, we summarized the important variables for
predicting outcomes in stroke patients, use of ML
algorithms, and methods for evaluating validity. Our
findings examined the manner in which predicting
the function of stroke patients using ML can be
applied in occupational and physical therapy.
Furthermore, this study encourages ML-based
research to further expand the occupational and

physical therapy domain.
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