Browse > Article
http://dx.doi.org/10.5187/jast.2022.e70

Establishment of intestinal organoids from small intestine of growing cattle (12 months old)  

Kang Won, Park (Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration)
Hyeon, Yang (Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration)
Min Gook, Lee (Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration)
Sun A, Ock (Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration)
Hayeon, Wi (Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration)
Poongyeon, Lee (Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration)
In-Sul, Hwang (Columbia Center for Translational Immunology, Columbia University Irving Medical Center, Columbia University)
Jae Gyu, Yoo (Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration)
Choon-Keun, Park (College of Animal Life Sciences, Kangwon National University)
Bo Ram, Lee (Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration)
Publication Information
Journal of Animal Science and Technology / v.64, no.6, 2022 , pp. 1105-1116 More about this Journal
Abstract
Recently, we reported the robust in vitro three-dimensional (3D) expansion of intestinal organoids derived from adult bovine (> 24 months) samples. The present study aimed to establish an in vitro 3D system for the cultivation of intestinal organoids derived from growing cattle (12 months old) for practical use as a potential alternative to in vivo systems for various purposes. However, very few studies on the functional characterization and 3D expansion of adult stem cells from livestock species compared to those from other species are available. In this study, intestinal crypts, including intestinal stem cells, from the small intestines (ileum and jejunum) of growing cattle were isolated and long-term 3D cultures were successfully established using a scaffold-based method. Furthermore, we generated an apical-out intestinal organoid derived from growing cattle. Interestingly, intestinal organoids derived from the ileum, but not the jejunum, could be expanded without losing the ability to recapitulate crypts, and these organoids specifically expressed several specific markers of intestinal stem cells and the intestinal epithelium. Furthermore, these organoids exhibited key functionality with regard to high permeability for compounds up to 4 kDa in size (e.g., fluorescein isothiocyanate [FITC]-dextran), indicating that apical-out intestinal organoids are better than other models. Collectively, these results indicate the establishment of growing cattle-derived intestinal organoids and subsequent generation of apical-out intestinal organoids. These organoids may be valuable tools and potential alternatives to in vivo systems for examining host-pathogen interactions involving epithelial cells, such as enteric virus infection and nutrient absorption, and may be used for various purposes.
Keywords
Growing cattle; Three-dimensional (3D) cultivation; Intestinal organoids; Apicalout structure; Characterization;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Haq I, Yang H, Ock SA, Wi HY, Park KW, Lee PY, et al. Recent progress and future perspectives on intestinal organoids in livestock. J Agric Life Sci. 2021;55:83-90. https://doi.org/10.14397/jals.2021.55.5.83    DOI
2 Lee BR, Yang H, Lee SI, Haq I, Ock SA, Wi H, et al. Robust three-dimensional (3D) expansion of bovine intestinal organoids: an in vitro model as a potential alternative to an in vivo system. Animals. 2021;11:2115. https://doi.org/10.3390/ani11072115    DOI
3 Huh D, Hamilton GA, Ingber DE. From 3D cell culture to organs-on-chips. Trends Cell Biol. 2011;21:745-54. https://doi.org/10.1016/j.tcb.2011.09.005    DOI
4 Powell RH, Behnke MS. WRN conditioned media is sufficient for in vitro propagation of intestinal organoids from large farm and small companion animals. Biol Open. 2017;6:698-705. https://doi.org/10.1242/bio.021717    DOI
5 Pierzchalska M, Panek M, Czyrnek M, Gielicz A, Mickowska B, Grabacka M. Probiotic Lactobacillus acidophilus bacteria or synthetic TLR2 agonist boost the growth of chicken embryo intestinal organoids in cultures comprising epithelial cells and myofibroblasts. Comp Immunol Microbiol Infect Dis. 2017;53:7-18. https://doi.org/10.1016/j.cimid.2017.06.002    DOI
6 Stewart AS, Freund JM, Gonzalez LM. Advanced three-dimensional culture of equine intestinal epithelial stem cells. Equine Vet J. 2018;50:241-8. https://doi.org/10.1111/evj.12734    DOI
7 Rallabandi HR, Yang H, Oh KB, Lee HC, Byun SJ, Lee BR. Evaluation of intestinal epithelial barrier function in inflammatory bowel diseases using murine intestinal organoids. Tissue Eng Regen Med. 2020;17:641-50. https://doi.org/10.1007/s13770-020-00278-0    DOI
8 Li Y, Yang N, Chen J, Huang X, Zhang N, Yang S, et al. Next-generation porcine intestinal organoids: an apical-out organoid model for swine enteric virus infection and immune response investigations. J Virol. 2020;94:e01006-20. https://doi.org/10.1128/JVI.01006-20    DOI
9 Wilson SS, Tocchi A, Holly MK, Parks WC, Smith JG. A small intestinal organoid model of non-invasive enteric pathogen-epithelial cell interactions. Mucosal Immunol. 2015;8:352-61. https://doi.org/10.1038/mi.2014.72    DOI
10 Takeda N, Jain R, LeBoeuf MR, Wang Q, Lu MM, Epstein JA. Interconversion between intestinal stem cell populations in distinct niches. Science. 2011;334:1420-4. https://doi.org/10.1126/science.1213214    DOI
11 Beaumont M, Blanc F, Cherbuy C, Egidy G, Giuffra E, Lacroix-Lamande S, et al. Intestinal organoids in farm animals. Vet Res. 2021;52:33. https://doi.org/10.1186/s13567-021-00909-x    DOI
12 Park KW, Yang H, Wi H, Ock SA, Lee P, Hwang IS, et al. Effect of Wnt signaling pathway activation on the efficient generation of bovine intestinal organoids. J Anim Reprod Biotechnol. 2022;37:136-43. https://doi.org/10.12750/JARB.37.2.136   DOI
13 Lee BR, Kim H, Park TS, Moon S, Cho S, Park T, et al. A set of stage-specific gene transcripts identified in EK stage X and HH stage 3 chick embryos. BMC Dev Biol. 2007;7:60. https://doi.org/10.1186/1471-213X-7-60    DOI
14 Lee BR, Rengaraj D, Choi HJ, Han JY. A novel F-box domain containing cyclin F like gene is required for maintaining the genome stability and survival of chicken primordial germ cells. FASEB J. 2020;34:1001-17. https://doi.org/10.1096/fj.201901294R    DOI
15 Formeister EJ, Sionas AL, Lorance DK, Barkley CL, Lee GH, Magness ST. Distinct SOX9 levels differentially mark stem/progenitor populations and enteroendocrine cells of the small intestine epithelium. Am J Physiol Gastrointest Liver Physiol. 2009;296:G1108-18. https://doi.org/10.1152/ajpgi.00004.2009    DOI
16 Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 2001;25:402-8. https://doi.org/10.1006/meth.2001.1262    DOI
17 Simmini S, Bialecka M, Huch M, Kester L, van de Wetering M, Sato T, et al. Transformation of intestinal stem cells into gastric stem cells on loss of transcription factor Cdx2. Nat Commun. 2014;5:5728. https://doi.org/10.1038/ncomms6728    DOI
18 Chen L, Vasoya RP, Toke NH, Parthasarathy A, Luo S, Chiles E, et al. HNF4 regulates fatty acid oxidation and is required for renewal of intestinal stem cells in mice. Gastroenterology. 2020;158:985-99.E9. https://doi.org/10.1053/j.gastro.2019.11.031    DOI
19 Rozman J, Krajnc M, Ziherl P. Collective cell mechanics of epithelial shells with organoid-like morphologies. Nat Commun. 2020;11:3805. https://doi.org/10.1038/s41467-020-17535-4    DOI
20 Montgomery RK, Breault DT. Small intestinal stem cell markers. J Anat. 2008;213:52-8. https://doi.org/10.1111/j.1469-7580.2008.00925.x    DOI
21 Hoffmann P, Schnepel N, Langeheine M, Kunnemann K, Grassl GA, Brehm R, et al. Intestinal organoid-based 2D monolayers mimic physiological and pathophysiological properties of the pig intestine. PLOS ONE. 2021;16:e0256143. https://doi.org/10.1371/journal.pone.0256143    DOI
22 Derricott H, Luu L, Fong WY, Hartley CS, Johnston LJ, Armstrong SD, et al. Developing a 3D intestinal epithelium model for livestock species. Cell Tissue Res. 2019;375:409-24. https://doi.org/10.1007/s00441-018-2924-9    DOI
23 Rahmani S, Breyner NM, Su HM, Verdu EF, Didar TF. Intestinal organoids: a new paradigm for engineering intestinal epithelium in vitro. Biomaterials. 2019;194:195-214. https://doi.org/10.1016/j.biomaterials.2018.12.006    DOI
24 Zhang YG, Wu S, Xia Y, Sun J. Salmonella-infected crypt-derived intestinal organoid culture system for host-bacterial interactions. Physiol Rep. 2014;2:e12147. https://doi.org/10.14814/phy2.12147    DOI
25 Forbester JL, Goulding D, Vallier L, Hannan N, Hale C, Pickard D, et al. Interaction of Salmonella enterica serovar Typhimurium with intestinal organoids derived from human induced pluripotent stem cells. Infect Immun. 2015;83:2926-34. https://doi.org/10.1128/IAI.00161-15    DOI
26 Saxena K, Blutt SE, Ettayebi K, Zeng XL, Broughman JR, Crawford SE, et al. Human intestinal enteroids: a new model to study human rotavirus infection, host restriction, and pathophysiology. J Virol. 2016;90:43-56. https://doi.org/10.1128/JVI.01930-15    DOI
27 Farre R, Fiorani M, Abdu Rahiman S, Matteoli G. Intestinal permeability, inflammation and the role of nutrients. Nutrients. 2020;12:1185. https://doi.org/10.3390/nu12041185    DOI
28 Zietek T, Rath E, Haller D, Daniel H. Intestinal organoids for assessing nutrient transport, sensing and incretin secretion. Sci Rep. 2015;5:16831. https://doi.org/10.1038/srep16831    DOI