Development of Carbon Capture and Storage (CCS) technique is becoming increasingly important as a method to mitigate the strengthening effects of global warming, generated from the unprecedented increase in released anthropogenic CO2. In the recent years, the characteristics of basaltic rocks (i.e., large volume, high reactivity and surplus of cation components) have been recognized to be potentially favorable in facilitation of CCS; based on this, research on utilization of basaltic formations for underground CO2 storage is currently ongoing in various fields. This study investigated the feasibility of underground storage of CO2 in basalt, based on the examination of the CO2 storage mechanisms in subsurface, assessment of basalt characteristics, and review of the global research on basaltic CO2 storage. The global research examined were classified into experimental/modeling/field demonstration, based on the methods utilized. Experimental conditions used in research demonstrated temperatures ranging from 20 to 250 ℃, pressure ranging from 0.1 to 30 MPa, and the rock-fluid reaction time ranging from several hours to four years. Modeling research on basalt involved construction of models similar to the potential storage sites, with examination of changes in fluid dynamics and geochemical factors before and after CO2-fluid injection. The investigation demonstrated that basalt has large potential for CO2 storage, along with capacity for rapid mineralization reactions; these factors lessens the environmental constraints (i.e., temperature, pressure, and geological structures) generally required for CO2 storage. The success of major field demonstration projects, the CarbFix project and the Wallula project, indicate that basalt is promising geological formation to facilitate CCS. However, usage of basalt as storage formation requires additional conditions which must be carefully considered - mineralization mechanism can vary significantly depending on factors such as the basalt composition and injection zone properties: for instance, precipitation of carbonate and silicate minerals can reduce the injectivity into the formation. In addition, there is a risk of polluting the subsurface environment due to the combination of pressure increase and induced rock-CO2-fluid reactions upon injection. As dissolution of CO2 into fluids is required prior to injection, monitoring techniques different from conventional methods are needed. Hence, in order to facilitate efficient and stable underground storage of CO2 in basalt, it is necessary to select a suitable storage formation, accumulate various database of the field, and conduct systematic research utilizing experiments/modeling/field studies to develop comprehensive understanding of the potential storage site.
Global warming has made the polar regions more accessible, leading to increased demand for the construction of new resource-development plants in oil-rich permafrost regions. The selection of locations of resource-development plants in permafrost regions should consider the surface displacement resulting from thawing and freezing of the active layer of permafrost. However, few studies have considered surface displacement in the selection of optimal locations of resource-development plants in permafrost region. In this study, Analytic Hierarchy Process (AHP) analysis using a range of geospatial information variables was performed to select optimal locations for the construction of oil-sands development plants in the permafrost region of southern Athabasca, Alberta, Canada, including consideration of surface displacement. The surface displacement velocity was estimated by applying the Small BAseline Subset Interferometric Synthetic Aperture Radar technique to time-series Advanced Land Observing Satellite Phased Array L-band Synthetic Aperture Radar images acquired from February 2007 to March 2011. ERA5 reanalysis data were used to generate geospatial data for air temperature, surface temperature, and soil temperature averaged for the period 2000~2010. Geospatial data for roads and railways provided by Statistics Canada and land cover maps distributed by the North American Commission for Environmental Cooperation were also used in the AHP analysis. The suitability of sites analyzed using land cover, surface displacement, and road accessibility as the three most important geospatial factors was validated using the locations of oil-sand plants built since 2010. The sensitivity of surface displacement to the determination of location suitability was found to be very high. We confirm that surface displacement should be considered in the selection of optimal locations for the construction of new resource-development plants in permafrost regions.
In this paper classifies the types of 228 anchor stones discharged from the west and south coasts, assumes a combined method by type, routes through discharge locations, and It attempted to estimate the burial site. Prior to classification of types, the weight, thickness, width, and length of the anchor stone were measured, and the largest Young in the tomb The scent weight was classified into I~V groups, and the shape of the anchor stone was classified into 1-6 types. All of these weight and shape correlations It was classified into 17 types. The combined method by type is 180kg or less depending on the morphological characteristics of the reference value of the extracted anchor stone, and the type An anchor of type 1 or 2 is used in combination with an anchor, and a anchor of type 3 or 6 weighs more than 180kg and is combined with an anchor The dragon was assumed to be an anchor. Along with this, the route and burial site are identified through past records and testimony of local residents It was checked against the data. The route was largely consistent with past records, but the new route was apparent in waters near the island or inland It was also drawn. In the case of burial sites, small and large in Taean Mado Sea and Jindo Byeokpajin Sea, where anchor stones are concentrated, Considering the pattern of the type anchor stones being discharged, it was consistent with the testimony that ships of various sizes were mysterious in the two seas. Based on this type classification, a study on the spatiality of the anchors was conducted. First, a comparison and analysis was done on whether actual real data, such as anchor stones, old ships, and relics, were identified on the Joun-ro route and international trade routes as recorded in the past literature. Where there was no record, the route was estimated based on real data. To this end, routes estimated based on the testimony of local residents and modern ship workers were analyzed as to whether ships traveled there in the past and whether they could actually sail. Next, the location of each seedling was estimated by ship size according to the weight of the anchor stone. In the case of the Taean Mado Sea and Jindo Byeokpajin Sea, both small and large anchor stones were discharged from the coastline and were far away.
The Bonghwang-dong ruins in Gimhae, the central area of Geumgwan Gaya, is presumed to be the site of the royal palace, and excavations have been in progress at the Gaya National Cultural Heritage Research Institute. According to a research conducted by lowering the level to the base layer on the north side of the site, mostly shell layers composed of oysters were confirmed, and soil composed of different material was alternately filled in to form a site construction. In other words, it can be seen that there was work at the site of the Bonghwang-dong ruins that required large-scale labor, such as building ramparts and embankments. There is stratigraphic confusion such as showing different age values in the same shell layer through a chronological analysis of organic matter and charcoal in the sedimentary layer, and deriving a result value in the upper layer ahead of the lower layer. In addition, open-sea diatoms are observed not only in the sedimentary layers, but also the pits. Therefore, it is judged that the soil constituting the ruins was brought from the outside. The Bonghwang-dong ruins are located inside the commonly called Bonghwang earthen ramparts, where many excavation organizations conducted research within the estimated range of the earthen fortifications. As a result, it was found that it was similar to the sedimentary layers of the ruins of the Three Kingdoms Period, which were investigated along with the ruins of Bonghwang-dong. Through this, the surrounding ruins, including those of Bonghwang-dong, were located close to paleo-Gimhae Bay, so it is believed that the soil brought from the surroundings was used to reinforce the ground. As a result of the excavation research on the Bonghwang-dong ruins conducted so far, it was found by sedimentary layer analysis and soil experiments that the ruins were created on stable land. Relics excavated in the sediments of the ruins and carbon dating data show that Bonghwang-dong carried out large-scale civil construction work in the 4th century to build the site, which clearly shows the status of Geumgwan Gaya.
This study is about the architectural changes over time in Dongchun-gotaek, the house of Song Jun-gil, one of the representative figures of the Hoseosarim(湖西士林), also an architectural cultural asset representing Daejeon. Data related to Sangryang(上樑) found in the restoration process of Dongchundang(同春堂) and DongchundangJongtaek(同春堂 宗宅), the state designated heritage application report written by Daejeon Metropolitan City, Deokeun-gaseung(德恩家乘), a book which has been handed down from generation to generation from Dongchundang Munjeonggongpa(同春堂 文正公派) of Eunjin Song's Clan and the results of partial excavation surveys respectively conducted in 2010 and 2020 were used as basic research data, and these data were compared and analyzed to examine the changes of the arrangement of Dongchundang, Jeongchim(正寢), and ancestral shrine buildings. Dongchundang was built by Song Jun-Gil. Rather than a new building, it was a building that was basically relocated to its current area when Cheongjwawa(淸坐窩), which was built by his father, dilapidated, and the timing of its construction can be clarified through Sangryangmun(上樑文). However, in the estimated area of Cheongjwawa, no exact site was found in two surveys of buried cultural heritages. In the case of Jeongchim, it was possible to confirm that it had been relocated two times, and it can be said that the biggest achievement of this study was to confirm that the first relocation was outside the current fence. In addition, one of the building sites which was identified in the excavation survey for confirming the servants' quarters was estimated to be the first construction at the site of Dongchun-gotaek. In the shrine area, there were the first constructed Gamyo(家廟), including Byeolmyo(別廟) dedicated to Bulcheonwi(不遷位), and Jomyo(祧廟) dedicated to Checheon(遞遷), and it can be seen that it was a space where many changes such as new construction, demolition, or mutual exchange of location occurred over time. The present buildings arrangement through these processes was not far from the original plan of Song Joon-gil. Therefore, the name of 'Dongchun-gotaek' is appropriate.
The Daebodan was an altar, which held a memorial service for emperors of the Ming dynasty. This alter, which was referred to as Hwangdan, was first constructed in 1704. When the Japanese Invasion of Korea commenced in 1592, Shinjong, the emperor of the Ming dynasty, sent reinforcements to Josun to help. This alter was made to repay Shinjong's kindness. Before this, Song-siyeol(宋時烈), Leader of Noron(老論), made a shrine at Hwayangdong to hold memorial services for Shinjong, and after some time, this developed into a national ceremony. Construction of the Daebodan largely changed the backyard of Changdukgung-palace. However considering the construction process, the meaning of the Daebodan was not a big deal. At first, the optimal place for the Daebodan was selected at the site of a inner icehouse. But the inner icehouse could not be transferred to other site due to the circumstances. After all, the Daebodan was constructed at the site of Byeoldaeyeong(別隊營) which was located in the outside of palace. Most of the stones for the new Daebodan were used ones. And the annexe of Byeoldaeyeong was used for Daebodan without any changes being made. The scale of the construction was not particularly grand. After the construction, Sukjong, who made the Daebodan, showed barely any interest in it. But the conception of the Daebodan was back again in the history by Youngjo. He was also not interested in the Daebodan during his early years of ruling time. However, in the 1740's, he started to become interested in the ceremony of Daebodan, and carried out a large-scale reconstruction of the Daebodan. Jegigo(祭器庫) was rebuilt In 1739. And Jaesil(齋室), staying one night before the ceremonial day, was added in 1745. In 1749, the Daebodan was greatly changed by enshrining Uijong and Taejo, emperors of the Ming dynasty. The shape of alter was changed. Moreover this alter was made by newly quarried stones. And several buildings, Junsachung(典祀廳), Jaesaengchung(宰牲廳) and Akgongchung(樂工廳), were added to the site. In 1762, meritorious retainers were enshrined to the Daebodan. After all the Daebodan became an important part of the backyard of Changdukgung-palace. During the reign of Jungjo, the Daebodan also was an important part of backyard of Changdukgung-palace. But significant changes were not made at that time. The only change was the moving of Kyungbonggak(敬奉閣) in 1799. Afterward the Daebodan remained unchanged. The ceremonies at the Daebodan stopped in 1908. And the Daebodan disappeared into the mist of history.
The primary purpose of this study is to estimate the structure of Byeongpungsadaseok (屛風莎臺石) and Nanganseok (欄干石) in Geonwonneung (建元陵) and Heonneung (獻陵), which were built in the early of 15th century, based on the Annals of King Sejong. In addition, the ultimate purpose of this study is to reveal structural changes and their significance by comparing the differences with the contents of the dismantlement survey. Geonwonneung, Jereung(齊陵), and Heonneung were repaired at the same time in 1442, and the structural changes were the similar. The purpose of the repair in 1442 was to prevent water from flowing into the underground palace with smooth drainage. As a result of estimating the structure of Geonwonneung and Heonneung according to the records of the Annals of King Sejong, it was created in a very similar form to the Hyeonneung and Jeongneung of Goryeo. And it was clearly recognized that the Royal Tomb of Goryeo was followed. However, as the structure was improved in 1442, the unique characteristics of the Royal Tomb of the Joseon Dynasty were formed. First is the appearance of the Bokbuhyeong lime (覆釜形石灰, which is a convex roof on the Byeongpungsadaseok that serves to prevent rainwater from penetrating into the burial mound. It also plays a role in connecting and fixing the Manseok (滿石) and the Inseok (引石), which are the upper structures of the Sadaseok (莎臺石). Second, the Bakseok (薄石) between the nanganseok and the sadaseok has been transformed into the Sangseok (裳石) with a slope. This plays a role in protecting the inner stone chamber by expanding the length of the bakseok, which forms an overall slope, like the eaves of the roof. After both of these features were first attempted in 1442, they were applied to all Royal Tombs of the Joseon Dynasty and became unique features of these Royal Tombs.
The Neolithic shell midden in Daejuk-ri, Seosan, is distributed on the gentle slope of a low hill close to the west coast. The bedrock of the area consists mainly of schist with various mafic minerals, but shows a partial gneiss pattern. The site consists of loamy topsoil and clay loam subsoil, and the degree of siallization is relatively low. Although the pottery excavated from the shell midden shares mostly similar features, a variety of shapes and patterns coexist. The surface colors, thickness and physical properties are slightly different. The pottery can be subdivided into three types (IA, IB and II) according to the composition of the body clay, the temper and the existence of a black core. Types IA and IB are colorless mineral pottery with a non-black or black core respectively. TypeII is colored mineral pottery with a non-black core. Type I pottery also contains non-plastic colored minerals, but type II contains a large amount of biotite, chlorite, talc, amphibole, diopside and tremolite, which include a large amount of Mg and Fe. The studied pottery contains a small amount of organic matter. Considering the grain size and relatively poor sorting and roundness of the non-plastic particles, the pottery appears to be made by adding coarse non-plastic tempers for special purposes to the untreated weathered soil around the site. The three types of pottery seem to have been incompletely fired in general. While type IB has the lowest degree of oxidation, typeII shows the highest degree of redness and oxidation. It can be interpreted that these differences depend on the firing temperature and the ratio of non-plastic particles. Through a synthesis of the minerals, geochemical data and thermal history, it can be determined that the firing temperature ranged from 600 to 700℃. The pottery types of the Daejuk-ri Shell Midden have slightly different production conditions, mineral compositions, and physical properties, but have undergone similar production processes with basically the same clay materials. The clay is almost identical to the composition of the bedrock and weathered soil distributed in the Daejuk-ri area. Currently, there is an industrial complex in the area, so it is difficult to confirm the soil and geological distribution of the site. However, it is highly probable that the area around the site was self-sufficient for the clay and tempers required for the production of the Neolithic pottery. Therefore, it can be interpreted that the group that left the shell midden in Daejuk-ri lived near the site, visited the site for the purpose of collecting and processing shellfish, and discarded the broken pottery along with shells.
The Shiveet Khairkhan is located on Tsengel Som in the middle of Bayan-ulgi Aimag in the Altai region. Various remains have been identified, and it has been found to be an important area of the Eurasian steppe. In this study, the characteristics of textile fibers and dyes excavated from the tombs of the 1st~3rd century Xianbei period in the sites of Shiveet Khairkhan, Mongolia were investigated. As a result of analysis using optical microscopic observation and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) for fiber identification, green and yellow fabrics were identified as silk fabrics. To investigate the properties of the dye, the surface reflectance of the dyed fabric was measured using an fiber optic reflectance spectrophotometer for non-destructive analysis. The green fabric appeared similar to the reflection spectrum of indigo dye. In addition, as a result of component analysis using gas chromatography-mass spectrometry, isatin and indigotine were detected. Isatin and indigotine are characteristic components of indigo dye, and it was found that the green fabric of the tombs of the Xianbei period was dyed using indigo dye. It was difficult to identify the type of dye in the yellow fabric as a result of reflectance spectrum and gas chromatography analysis. Indigo plants are a dye used for blue dyeing from thousands of years ago, and many species are distributed around the world. It was confirmed that the fabric was relatively well preserved and indigo dye was used for the green Jikryeongui (garment with a straight collar) in the ancient tomb of the Xianbei period about 1,800 years ago, even though it was buried for a long time. Scientific investigation of textile cultural heritage is an essential process for conservation treatment, restoration, exhibition, and the creation of a conservation environment. It is expected that related research will be activated in the future and will be helpful in interpreting the living culture at the time, preserving textiles, and a conservation environment.
CHO Hajin ;CHAE Seunga ;SONG Jinuk;LEE Myeongseong ;LEE Taejong
Korean Journal of Heritage: History & Science
/
v.55
no.4
/
pp.180-193
/
2022
The East Nine Royal Tombs is a representative place in the Royal Tombs of Joseon (a World Heritage Site). It consists of 1,289 stone artifacts including 979 related stone structures, 310 stone statues, and objects. Most of the stone structures in the East Nine Royal Tombs are composed of biotite granite, but some tombs are composed of light red granite. As a result of magnetic susceptibility measurement, the average data from Geonwolleung to Mongneung, excluding Hyeolleung, were similar, so it is estimated that stones were obtained from the same quarry. In the case of Sungneung, Sureung, and Gyeongneung, the range of susceptibility measurement is widely distributed. It assumed that the newly produced stones were mixed in the moving and construction process. Also, stones might be gathered from different quarries. As a result of a conservation status investigation, both the mound member and the ridge stone had the highest damage rate due to peeling and granular decomposition according to surface weathering. In the case of surface discoloration, yellowing and soils were found in the burial mound members. Yellowing, blackening, and soil were identified in the ridge stone structures. Bio-degradation is the major factor of deterioration of the East Nine Royal Tombs and the conservation status of the tombs were detected as grades 4 to 5. It seems that it is easy for the environment of the royal tombs to form soil for the microorganisms and fine conditions for continuous moisture. In the case of structures, they are in relatively good condition. As a result of a comprehensive damage rating for each tomb, the overall condition is good, but the Geonwolleung Royal Tomb and Hyeolleung Tomb, which were created in the early period, had relatively high weathering ratings. Stone objects in East Nine Royal Tombs have lost many pieces and gateway members due to surface deterioration. Also, secondary damage is ongoing. Each damage factor of the stone artifacts of the East Nine Royal Tombs combines to cause various and continuous damages. Therefore, it is necessary to establish regular conservation status data of the stone artifacts for efficient management after processing as well as conservation treatment of the royal tombs, and specific management manuals and systems. This study investigated the conservation status of stone structures in the East Nine Royal Tombs, a World Heritage Site, and systematically classified them to provide priority and necessity for conservation processing. We look forward to establishing a plan for the conservation and management of the East Nine Royal Tombs with this database in the future.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.