• Title/Summary/Keyword: Kirchhoff plates

Search Result 38, Processing Time 0.021 seconds

Free Vibration Analysis of Multi-delaminated Composite Plates (다층간분리된 적층판의 자유진동해석)

  • Taehyo Park;Seokoh Ma;Yunju Byun
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.25-32
    • /
    • 2004
  • In this proposed work new finite element model for multi-delaminated plates is proposed. In the current analysis procedures of multi-delaminated plates, plate element based on Mindlin plate theory is used in order to obtain accurate results of out-of-plane displacement of thick plate. And for delaminated region, plate element based on Kirchhoff plate theory is considered. To satisfy the displacement continuity conditions, displacement vector based on Kirchhoff theory is transformed to displacement of transition element. The numerical results show that the effect of delaminations on the modal parameters of delaminated composites plates is dependent not only on the size, the location and the number of the delaminations but also on the mode number and boundary conditions. Kirchhoff based model have higher natural frequency than Mindlin based model and natural frequency of the presented model is closed to Mindlin based model.

  • PDF

A Comparative Study on the Displacement Behaviour of Triangular Plate Elements (삼각형 판 요소의 변위 거동에 대한 비교 연구)

  • 이병채;이용주;구본웅
    • Computational Structural Engineering
    • /
    • v.5 no.2
    • /
    • pp.105-118
    • /
    • 1992
  • Static performance was compared for the triangular plate elements through some numerical experiments. Four Kirchhoff elements and six Mindlin elements were selected for the comparison. Numerical tests were executed for the problems of rectangular plates with regular and distorted meshes, rhombic plates, circular plates and cantilever plates. Among the Kirchhoff 9 DOF elements, the discrete Kirchhoff theory element was the best. Element distortion and the aspect ratio were shown to have negligible effects on the displacement behaviour. The Specht's element resulted in better results than the Bergan's but it was sensitive to the aspect ratio. The element based on the hybrid stress method also resulted in good results but it assumed to be less reliable. Among the linear Mindlin elements, the discrete shear triangle was the best in view of reliability, accuracy and convergence. Since the thin plate behaviour of it was as good as the DKT element, it can be used effectively in the finite element code regardless of the thickness. As a quadratic Mindlin element, the MITC7 element resulted in best results in almost all cases considered. The results were at least as good as those of doubly refined meshes of linear elements.

  • PDF

Study on the Analysis of Anisotropic Laminated Cantilever Thin Plates and Anisotropic Laminated Cantilever Thick Plates (비등방성 적층 캔틸레버 박판 및 후판의 해석연구)

  • Park, Won-Tae
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.1 no.4
    • /
    • pp.1-5
    • /
    • 2010
  • In this study, it is presented analysis results of bending problems in the anisotropic cantilever thick plates and the anisotropic laminated cantilever thin plates bending problems. Finite element method in this analysis was used. Both Kirchoff's assumptions and Mindlin assumptions are used as the basic governing equations of bending problems in the anisotropic laminated plates. The analysis results are compared between the anisotropic laminated cantilever thick plates and the anisotropic laminated cantilever thin plates for the variations of thickness-width ratios.

  • PDF

Development of near field Acoustic Target Strength equations for polygonal plates and applications to underwater vehicles (근접장에서 다각 평판에 대한 표적강도 이론식 개발 및 수중함의 근거리 표적강도 해석)

  • Cho, Byung-Gu;Hong, Suk-Yoon;Kwon, Hyun-Wung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.1062-1073
    • /
    • 2007
  • Acoustic Target Strength (TS) is a major parameter of the active sonar equation, which indicates the ratio of the radiated intensity from the source to the re-radiated intensity by a target. In developing a TS equation, it is assumed that the radiated pressure is known and the re-radiated intensity is unknown. This research provides a TS equation for polygonal plates, which is applicable to near field acoustics. In this research, Helmholtz-Kirchhoff formula is used as the primary equation for solving the re-radiated pressure field; the primary equation contains a surface (double) integral representation. The double integral representation can be reduced to a closed form, which involves only a line (single) integral representation of the boundary of the surface area by applying Stoke's theorem. Use of such line integral representations can reduce the cost of numerical calculation. Also Kirchhoff approximation is used to solve the surface values such as pressure and particle velocity. Finally, a generalized definition of Sonar Cross Section (SCS) that is applicable to near field is suggested. The TS equation for polygonal plates in near field is developed using the three prescribed statements; the redection to line integral representation, Kirchhoff approximation and a generalized definition of SCS. The equation developed in this research is applicable to near field, and therefore, no approximations are allowed except the Kirchhoff approximation. However, examinations with various types of models for reliability show that the equation has good performance in its applications. To analyze a general shape of model, a submarine type model was selected and successfully analyzed.

  • PDF

Buckling of rectangular plates with mixed edge supports

  • Xiang, Y.;Su, G.H.
    • Structural Engineering and Mechanics
    • /
    • v.14 no.4
    • /
    • pp.401-416
    • /
    • 2002
  • This paper presents a domain decomposition method for buckling analysis of rectangular Kirchhoff plates subjected to uniaxial inplane load and with mixed edge support conditions. A plate is decomposed into two rectangular subdomains along the change of the discontinuous support conditions. The automated Ritz method is employed to derive the governing eigenvalue equation for the plate system. Compatibility conditions are imposed for transverse displacement and slope along the interface of the two subdomains by modifying the Ritz trial functions. The resulting Ritz function ensures that the transverse displacement and slope are continuous along the entire interface of the two subdomains. The validity and accuracy of the proposed method are verified with convergence and comparison studies. Buckling results are presented for several selected rectangular plates with various combination of mixed edge support conditions.

Deducing thick plate solutions from classical thin plate solutions

  • Wang, C.M.
    • Structural Engineering and Mechanics
    • /
    • v.11 no.1
    • /
    • pp.89-104
    • /
    • 2001
  • This paper reviews the author's work on the development of relationships between solutions of the Kirchhoff (classical thin) plate theory and the Mindlin (first order shear deformation) thick plate theory. The relationships for deflections, stress-resultants, buckling loads and natural frequencies enable one to obtain the Mindlin plate solutions from the well-known Kirchhoff plate solutions for the same problem without much tedious mathematics. Sample thick plate solutions, deduced from the relationships, are presented as benchmark solutions for researchers to use in checking their numerical thick plate solutions.

Finite Element Analysis for Free Vibration of Laminated Plates Containing Multi-Delamination (다층 층간분리된 적층 판의 유한요소 자유진동해석)

  • Taehyo Park;Seokoh Ma
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.37-44
    • /
    • 2003
  • In this proposed work, computational, finite element model far multi-delaminated plates will be developed. In the current analysis procedures of multi-delaminated plates, different elements are used at delaminated and undelaminated region separately. In the undelaminated region, plate element based on Mindlin plate theory is used in order to obtain accurate results of out-of-plane displacement of thick plate. And for delaminated region, plate element based on Kirchhoff plate theory is considered. To satisfy the displacement continuity conditions, displacement vector based on Kirchhoff theory is transformed to displacement of transition element. Element mass and stiffness matrices of each region (delaminated, undelaminated and transition region) will be assembled for global matrix.

  • PDF

Study on the Analysis of Orthotropic Thin Plates and Orthotropic Thick Plates (직교이방성 박판 및 후판의 해석연구)

  • 박원태;최재진
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.4 no.2
    • /
    • pp.76-80
    • /
    • 2003
  • In this study, it is presented analysis results of bending problems in the orthotropic thick plates and the orthotropic thin plates. Finite element method in this analysis was used. Both Kirchoffs assumptions and Mindlin assumptions are used as the basic governing equations of bending problems in the orthotropic plates. The analysis results are compared between the orthotropic thick plates and the orthotropic thin plates for the variations of thickness-width ratios.

  • PDF

Determination of the Vlasov foundation parameters -quadratic variation of elasticity modulus- using FE analysis

  • Celik, Mecit;Omurtag, Mehmet H.
    • Structural Engineering and Mechanics
    • /
    • v.19 no.6
    • /
    • pp.619-637
    • /
    • 2005
  • The objective of this research was to determine the Vlasov soil parameters for quadratically varying elasticity modulus $E_s$(z) of the compressible soil continuum and discuss the interaction affect between two close plates. Interaction problem carried on for uniformly distributed load carrying plates. Plate region was simulated by Kirchhoff plate theory based (mixed or displacement type) 2D elements and the foundation continuum was simulated by displacement type 2D elements. At the contact region, plate and foundation elements were geometrically coupled with each other. In this study the necessary formulas for the Vlasov parameters were derived when Young's modulus of the soil continuum was varying as a quadratic function of z-coordinate through the depth of the foundation. In the examples, first the elements and the iterative FE algorithm was verified and later the results of quadratic variation of $E_s$(z) were compared with the previous examples in order to discuss the general behavior. As a final example two plates close to each other resting on elastic foundation were handled to see their interaction influences on the Vlasov foundation parameters. Original examples were solved using both mixed and displacement type plate elements in order to confirm the results.

Benchmark Modal Stress-Resultant Distributions for Vibrating Rectangular Plates with Two Opposite Edges Free

  • Y. Xiang;Wang, C.M.;T. Utsunomiya;C. Machimdamrong
    • Computational Structural Engineering : An International Journal
    • /
    • v.1 no.1
    • /
    • pp.49-57
    • /
    • 2001
  • This paper presents exact solutions for the modal stress-resultant distributions for vibrating rectangular Mindlin plates involving two opposite sides simply supported while the other two sides free. These exact stress-resultants of vibrating plates with free edges, hitherto unavailable, are very important because they serve as benchmark solutions for checking numerical solutions and methods. Using the exact solutions of a square plate, this paper highlights the problem of determining accurate stress-resultants, especially the transverse shear forces and twisting moments in thin plates, when employing the widely used numerical methods such as the Ritz method and the finite element method. Thus, this study shows that there is a need for researchers to develop refinements to the Ritz method and the finite element method for determining very accurate stress-resultants in vibrating plates with free edges.

  • PDF