• Title/Summary/Keyword: Kinematic control

Search Result 646, Processing Time 0.04 seconds

A new kinematic formulation of closed-chain mechanisms with redundancy and its applications to kinematic analysis

  • Kim, Sungbok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.396-399
    • /
    • 1995
  • This paper presents a new formulation of the kinematics of closed-chain mechanisms and its applications to obtaining the kinematic solutions and analyzing the singularities. Closed-chain mechanisms under consideration may have the redundancy in the number of joints. A closed-chain mechanism can be treated as the parallel connection of two open-chains with respect to a point of interest. The kinematics of a closed-chain mechanism is then obtained by imposing the kinematic constraints of the closed-chain on the kinematics of the two open-chains. First, we formulate the kinematics of a closed-chain mechanism using the kinematic constraint between the controllable active joints and the rest of joints, instead of the kinematic constraint between the two open-chains. The kinematic formulation presented in this paper is valid for closed-chain mechanisms with and without the redundancy. Next, based on the derived kinematics of a closed-chain mechanism, we provide the kinematic solutions which are more physically meaningful and less sensitive to numerical instability, and also suggest an effective way to analyze the singularities. Finally, the computational cost associated with the kinematic formulation is analyzed.

  • PDF

A study on the hybrid position/force control of two cooperating arms with asymmetric kinematic structures (비대칭 구조를 갖는 두 협조 로봇의 하이브리드 위치/힘 제어에 관한 연구)

  • 여희주;서일홍;홍석규;김창호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.743-746
    • /
    • 1996
  • A hybrid control scheme to regulate the force and position by dual arms is proposed, where two arms are treated as one arm in a kinematic viewpoint. Our approach is different from other hybrid control approaches which consider robot dynamics, in the sense that we employ a purely kinematic based approach for hybrid control, with regard to the nature of position-controlled industrial robots. The proposed scheme is applied to sawing task. In the sawing task, the trajectory of the saw grasped by dual arms is planned in an offline fashion. When the trajectory of the saw is planned to follow a line in a horizontal plane, 3 position parameters are to be controlled(i.e, two translational positions and one rotational position). And a certain level of contact force has to be controlled along the vertical direction(i.e., minus z-direction) not to loose the contact with the object to be sawn. Typical feature of sawing task is that the contact position where the force control is to be performed is continuously changing. Therefore, the kinematic mapping between the force controlled position and the joint actuators has to be updated continuously. The effectiveness of the proposed control scheme is experimentally demonstrated. The proposed hybrid control scheme can be applied to arbitrary dual arm systems, regardless of their kinematic structure and the number of actuated joints.

  • PDF

Kinematic optimal design and analysis of kinematic/dynamic performances of a 3 degree-of-freedom excavator subsystem (3 자유도 굴착기 부속 시스템의 기구학적 최적 설계와 기구학/동력학 성능 해석)

  • Kim, Whee-Kuk;Han, Dong-Young;Yi, Byung-Ju
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.4
    • /
    • pp.422-434
    • /
    • 1997
  • In this paper, a two-stage kinematic optimal design for a 3 degree of-freedom (DOF) excavator subsystem, which consists of boom, arm and bucket, is performed. The objective of the first stage is to find the optimal parameters of the joint-actuating mechanisms which maximize the force-torque transmission ratio between the hydraulic actuator and the rotating joint. The objective of the second stage is to find the optimal link parameters which maximize the isotropic characteristic of the excavator subsystem throughout the workspace. It is illustrated that kinematic/dynamic performances of the kinematically optimized excavator subsystem have improved compared to those of original HE280 excavator, with respect to three performance indices such as maximum load handling capacity, maximum velocity capability, and acceleration capability.

  • PDF

Calibration of Mobile Robot with Single Wheel Powered Caster (단일 바퀴 구동 캐스터 기반 모바일 로봇의 캘리브레이션)

  • Kim, Hyoung Cheol;Park, Suhan;Park, Jaeheung
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.2
    • /
    • pp.183-190
    • /
    • 2022
  • Accurate kinematic parameters of mobile robots are essential because inaccurate kinematic model produces considerable uncertainties on its odometry and control. Especially, kinematic parameters of caster type mobile robots are important due to their complex kinematic model. Despite the importance of accurate kinematic parameters for caster type mobile robots, few research dealt with the calibration of the kinematic model. Previous study proposed a calibration method that can only calibrate double-wheeled caster type mobile robot and requires direct-measuring of robot center point and distance between casters. This paper proposes a calibration method based on geometric approach that can calibrate single-wheeled caster type mobile robot with two or more casters, does not require direct-measuring, and can successfully acquire all kinematic parameters required for control and odometry. Simulation and hardware experiments conducted in this paper validates the proposed calibration method and shows its performance.

Optimum Design of a New 4-DOF Parallel Mechanism

  • Chung, Jae-Heon;Yi, Byung-Ju;Kim, Whee-Kuk
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.302-307
    • /
    • 2005
  • Recently, lots of parallel mechanisms for spatial 3-DOF and 6-DOF were investigated. However, research on 4-DOF and 5-DOF parallel mechanisms has been very few. In this paper, we propose a 4-DOF parallel mechanism that consists of 3-rotational and 1-translational motions. The kinematic characteristics of this mechanism are analyzed in terms of an isotropic index and maximum force transmission ratio, and its kinematic optimization is being conducted to ensure enhanced kinematic performances

  • PDF

Data-Driven Kinematic Control for Robotic Spatial Augmented Reality System with Loose Kinematic Specifications

  • Lee, Ahyun;Lee, Joo-Haeng;Kim, Jaehong
    • ETRI Journal
    • /
    • v.38 no.2
    • /
    • pp.337-346
    • /
    • 2016
  • We propose a data-driven kinematic control method for a robotic spatial augmented reality (RSAR) system. We assume a scenario where a robotic device and a projector-camera unit (PCU) are assembled in an ad hoc manner with loose kinematic specifications, which hinders the application of a conventional kinematic control method based on the exact link and joint specifications. In the proposed method, the kinematic relation between a PCU and joints is represented as a set of B-spline surfaces based on sample data rather than analytic or differential equations. The sampling process, which automatically records the values of joint angles and the corresponding external parameters of a PCU, is performed as an off-line process when an RSAR system is installed. In an on-line process, an external parameter of a PCU at a certain joint configuration, which is directly readable from motors, can be computed by evaluating the pre-built B-spline surfaces. We provide details of the proposed method and validate the model through a comparison with an analytic RSAR model with synthetic noises to simulate assembly errors.

Kinematic Modeling of Chained Form Mobile Robot

  • Han, Jae-Yong;Lee, Jae-Hoon;Yi, Byung-Ju;Kim, Whee-Kuk
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2057-2062
    • /
    • 2003
  • Chained form mobile robots have been studied from the viewpoint of the control and analysis of nonholonomic mechanical systems in literature. However, researches for the detailed closed form kinematic modeling are rarely progressed. Nothing that a chained form mobile robot can be considered as a parallel system including several chains and wheels, the transfer method using augmented generalized coordinates is applied to obtain inverse and forward kinematic models of chained form mobile robots. Various numerical simulations are conducted to verify the effectiveness of the suggested kinematic model.

  • PDF

Kinematic Modeling of Mobile Robots by Transfer Method of Augmented Generalized Coordinates (확장된 좌표계 전환기법에 의한 모바일 로봇의 기구학 모델링)

  • Kim, Wheekuk;Kim, Do-Hyung;Yi, Byung-Ju
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.3
    • /
    • pp.233-242
    • /
    • 2002
  • A kinematic modeling method is proposed which models the sliding and skidding at the wheels as pseudo joints and utilizes those pseudo joint variables as augmented variables. Kinematic models of various type of wheels are derived based on this modeling method. Then, the transfer method of augmented generalized coordinates is applied to obtain inverse and forward kinematic models of mobile robots. The kinematic models of five different types of planar mobile robots are derided to show the effectiveness of the proposed modeling method.