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OPTIMAL CONTROL FOR THE FOREST KINEMATIC

MODEL

Sang-Uk Ryu

Abstract. This paper is concerned with the optimal control for the forest

kinematic model. That is, we show the exiatence of the strong solution

for the forest kinematic model and then show the existence of the optimal
control.

1. Introduction

In this paper we consider the following optimal control problem

(P) minimize J (u)

with the cost functional J (u) of the form

J (u) =

∫ T

0

‖y(u)− yd‖2L2(I)dt+

∫ T

0

‖ρ(u)− ρd‖2L2(I)dt

+ γ‖u‖2H1(0,T ), u ∈ H1(0, T ),

where y = y(u) and ρ = ρ(u) are governed by the forest dynamical system

∂y

∂t
= d

∂2y

∂x2
− γ(ρ)y − fy + gρ in I × (0, T ],

∂ρ

∂t
= fy − hρ− u(t)ρ in I × (0, T ], (1.1)

∂y

∂x
(0, t) =

∂y

∂x
(L, t) = 0 on (0, T ],

y(x, 0) = y0(x), ρ(x, 0) = ρ0(x) in I.

Here, I = (0, L) is a bounded interval in R. y = y(x, t) denotes tree density of
young age class in I at time t and ρ = ρ(x, t) is tree density of old age class
in I at time t. g > 0 is fertility of the species. h > 0 and f > 0 denote death
and aging rates. γ(ρ) denotes a mortality rate function of the young trees with
γ(ρ) = a(ρ− b)2 + c (a, b, c > 0). u(t) denotes the control term.
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The modelling of forest age structure dynamics is one of the most impor-
tant problems of mathematical ecology. The model (1.1) is introduced as base
mathematical model of mono-species forest with two age classes ([1], [2]).

Many authors studied for the optimal control problem governed by the re-
action diffusion model. In [8], the optimal control problem for the chemotaxis
model was stusied. Brandaõ et al.([6]) considered the optimal control problem
for FitzHugh-Nagumo equation. In [3], [4] and [7], the optimal control problem
for prey-predator reaction diffusion model was studied. In this paper, we show
the existence of the strong solution of (1.1). We also show the existence of the
optimal control.

The paper is organized as follows. Section 2 is a preliminary section. In
Section 3, we show the existence of the strong solutions. Section 4 show the
existence of the optimal control.

Notation. Let J be an interval in the real line R. Lp(J ;H), 1 ≤ p ≤ ∞,
denotes the Lp space of measurable functions in J with values in a Hilbert space
H. C(J ;H) denotes the space of continuous functions in J with values in H.
W 1,2(J ;H) = {y;Djy ∈ L2(J ;H), j = 0, 1}, where D is the derivative in the
sense of distributions. For simplicity, we shall use a universal constant C to
denote various constants which are determined in each occurrence in a specific
way by a, b, c, d, f, g, h, m, l and I.

2. Preliminaries

First we recall a general existence result which we use in the sequel([5]).
Consider the following abstract problem

dY

dt
= AY + F (t, Y (t)), t ∈ [0, T ], (2.1)

Y (0) = Y0,

where A is a linear operator defined on a Banach space X, with the domain
D(A) and F : [0, T ]×X → X is a given function. IfX is a Hilbert space endowed
with the scalar product (·, ·), then the linear operator A is called dissipative if
(AY, Y ) ≤ 0, for all Y ∈ D(A).

Theorem 2.1. ([5]) Let X be a real Banach space, A : D(A) ⊂ X → X be the
infinitesimal generator of a C0-semigroup of linear contractions {S(t), t ≥ 0}
on X, and F : [0, T ] × X → X be a measurable function in t and Lipschitz
continuous in x ∈ X, uniformly with respect to t ∈ [0, T ].

(i) If Y0 ∈ X, then problem (2.1) admits a unique mild solution, i.e. a
function Y ∈ C([0, T ];X) which verifies the equality

Y (t) = S(t)Y0 +

∫ t

0

S(t− s)F (s, Y (s))ds, ∀t ∈ [0, T ].
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(ii) If X is a Hilbert space, A is self adjoint and dissipative on X and Y0 ∈
D(A), then the mild solution is in fact a strong solution and Y ∈W 1,2(0, T ;X)∩
L2(0, T ;D(A)).

3. Existence of the strong solution

In this section, we show the existence and uniqueness of a local strong solution
for (1.1).

We rewrite (1.1) as an abstract problem (2.1) in the Hilbert spaces H =
L2(I) × L2(I). To this end, let us define the operator A : D(A) ⊂ H → H as
follows:

AY =

(
d ∂2

∂x2 0
0 0

)(
y

ρ

)
, Y =

(
y

ρ

)
∈ D(A).

Here, D(A) =
{
Y =

(
y
ρ

)
∈ H2(I) × L∞(I), ∂y∂x (0) = ∂y

∂x (L) = 0
}

. Then A is a

self adjoint dissipative operator in H.
Thus, (1.1) is formulated to the following abstract form

dY

dt
+AY = F (t, Y (t)), 0 < t ≤ T, (3.1)

Y (0) = Y0

in the space H. Here, F (t, Y (t)) : [0, T ]×H → H is the mapping

F (t, Y (t)) =

(
f(t, y, ρ)

g(t, y, ρ)

)
=

(
−γ(ρ)y − fy + gρ

fy − hρ− u(t)ρ

)
(3.2)

and Y0 is defined by Y0 =
(
y0
ρ0

)
. K =

{(
y0
ρ0

)
∈ D(A); 0 ≤ y0 and 0 ≤ ρ0

}
and

Uad = {u ∈ H1(0, T ); ‖u‖H1(0,T ) ≤ m, 0 ≤ u(t) ≤ l}.

Now, we have the followig result for the local strong solution to (1.1).

Theorem 3.1. For Y0 ∈ K and u ∈ Uad, (1.1) has a unique strong solution
Y =

(
y
ρ

)
∈W 1,2(0, Ty0,ρ0,u;H) such that

0 ≤ y ∈ L∞((0, Ty0,ρ0,u)× I) ∩ L∞(0, Ty0,ρ0,u;H1(I)) ∩ L2(0, Ty0,ρ0,u;H2(I)),

0 ≤ ρ ∈ L∞((0, Ty0,ρ0,u)× I) ∩ L∞(0, Ty0,ρ0,u;L2(I)).

Here, Ty0,ρ0,u > 0 is determined by ‖y0‖L∞(I), ‖ρ0‖L∞(I) and ‖u‖H1(0,T ). More-
over, the estimates∥∥∥∂y
∂t

∥∥∥
L2(0,Ty0,ρ0,u;L2(I))

+‖y‖L2(0,Ty0,ρ0,u;H2(I))+‖y‖H1(I)+‖y‖L∞((0,Ty0,ρ0,u)×I) ≤ C

(3.3)
and ∥∥∥∂ρ

∂t

∥∥∥
L2(0,Ty0,ρ0,u;L2(I))

+ ‖ρ‖L∞((0,Ty0,ρ0,u)×I) + ‖ρ‖L2(I) ≤ C (3.4)

hold, where C is also determined by ‖y0‖L∞(I), ‖ρ0‖L∞(I) and ‖u‖H1(0,T ).
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Proof. Since F (t, Y (t)) defined in (3.2) is not Lipschitz continuous with respect
to Y uniformly for t ∈ [0, T ], we can not apply Theorem 2.1 for (3.1).

Step 1. We use a truncation procedure for F (t, Y (t))([1], [2], [7]). For a fixed
positive integer N > 0, let us consider the following auxilary problem:

dYN
dt

+AYN = FN (t, YN (t)), 0 < t ≤ T, (3.5)

YN (0) = Y0,

where YN =
(
yN
ρN

)
and FN (t, YN (t)) =

(fN (t,yN ,ρN )
gN (t,yN ,ρN )

)
with fN (t, yN , ρN ),

gN (t, yN , ρN ) defined as follows: If y and ρ are greater than N or less than
−N , then we replace y and ρ by N or −N . If |y|, |ρ| ≤ N , then y and ρ in
f(t, y, ρ) remain unchanged. Similarly, y and ρ in g(t, y, ρ) remain unchanged.

Thus FN (t, YN (t)) =
(fN (t,yN ,ρN )
gN (t,yN ,ρN )

)
is well defined on [0, T ] ×H. Then, we can

check that the function FN (t, YN (t)) is Lipschitz continuous with respect to YN
uniformly for t ∈ [0, T ]. Thus, it follows from Theorem 2.1 that there exists a
unique strong solution YN ∈W 1,2(0, T ;H) ∩ L2(0, T ;D(A)).

Step 2. We show that yN ∈ L∞(0, T ;H1(I)). Indeed, from first equation of
(3.5), we deduce that

∫ t

0

∫
I

∣∣∣∂yN
∂t

∣∣∣2dxdτ + d2

∫ t

0

∫
I

∣∣∣∂2yN
∂x2

∣∣∣2dxdτ + d

∫
I

∣∣∣∂yN
∂x

∣∣∣2dx
= d

∫
I

∣∣∣∂y0

∂x

∣∣∣2dx+

∫ t

0

∫
I

|fN (τ, yN , ρN )|2dxdτ.

By the Lipschitz property of fN (t, yN , ρN ) we obtain that

d

∫
I

∣∣∣∂yN
∂x

∣∣∣2dx ≤ d∫
I

∣∣∣∂y0

∂x

∣∣∣2dx+ C

∫ T

0

∫
I

(|yN |2 + |ρN |2)dxdt.

Since yN , ρN ∈W 1,2(0, T ;L2(I)) and y0 ∈ H2(I), we have yN ∈ L∞(0, T ;H1(I)).
Similarly, multiplying the second equation of (3.5) by ρN , we obtain that∫

I

|ρN |2dx ≤
∫
I

|ρ0|2dx+ C

∫ T

0

∫
I

|gN (t, yN , ρN )|2dxdt

≤
∫
I

|ρ0|2dx+ C

∫ T

0

∫
I

(|yN |2 + |ρN |2)dxdt.

Since yN , ρN ∈W 1,2(0, T ;L2(I)) and ρ0 ∈ L∞(I), we have ρN ∈ L∞(0, T ;L2(I)).
Step 3. Let us prove the boundedness of YN on (0, T )× I. Put

M = max{‖fN‖L∞((0,T )×I), ‖gN‖L∞((0,T )×I), ‖y0‖L∞(I), ‖ρ0‖L∞(I)}.
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Note that function ỹN (t, x) = yN (t, x)−Mt− ‖y0‖L∞(I) satisfies the following
problem

dỹN
dt

= d
∂2ỹN
∂x2

+ fN (t, yN (t), ρN (t))−M, 0 < t ≤ T, (3.6)

ỹN (0) = y0 − ‖y0‖L∞(I).

Then the strong solution of (3.6) can be written as

ỹN (t) = S(t)
(
y0 − ‖y0‖L∞(I)

)
+

∫ t

0

S(t− s)
(
fN (s, yN (s), ρN (s))−M

)
ds,

where {S(t), t ≥ 0} is the C0-semigroup generated by the operator B : D(B) ⊂
L2(I)→ L2(I).

By = d
∂2y

∂x2
, D(B) = {y ∈ H2(I);

∂y

∂x
(0) =

∂y

∂x
(L) = 0}.

Since y0 − ‖y0‖L∞(I) ≤ 0 and fN (t, yN (t), ρN (t))−M ≤ 0, it follows from the
comparison principle of parabolic equation that ỹN (t, x) ≤ 0 for all (t, x) ∈
(0, T )× I. In the same manner we can prove that wN (t, x) = yN (t, x) +Mt+
‖y0‖L∞(I) is nonnegative. Thus, we have

|yN (t, x)| ≤Mt+ ‖y0‖L∞(I), (t, x) ∈ (0, T )× I. (3.7)

On the other hand, the function ρ̃N (t, x) = ρN (t, x)−Mt− ‖ρ0‖L∞(I) satisfies
the following problem

dρ̃N
dt

= gN (t, yN (t), ρN (t))−M, 0 < t ≤ T,

ρN (0) = ρ0 − ‖ρ0‖L∞(I).

Since ρ0 − ‖ρ0‖L∞(I) ≤ 0 and gN (t, yN (t), ρN (t)) − M ≤ 0, it follows that
ρ̃N (t, x) ≤ 0 for all (t, x) ∈ (0, T ) × I. In the same manner we can prove that
zN (t, x) = ρN (t, x) +Mt+ ‖ρ0‖L∞(I) is nonnegative. Therefore, we obtain

|ρN (t, x)| ≤Mt+ ‖ρ0‖L∞(I), (t, x) ∈ (0, T )× I. (3.8)

Thus we have proved that yN , ρN ∈ L∞((0, T ) × I), the upper bound being
dependent only on N .

Step 4. To show the positiveness of yN , we consider the following auxilary
problem:

dY N
dt

+AY N = FN (t, Y N (t)), 0 < t ≤ T,

Y N (0) = Y0,

where

FN (t, Y N (t)) =

(
−γ(ρ̄N )ȳN − fȳN + g|ρ̄N |
fȳN − hρ̄N − u(t)ρ̄N

)
.

Let us verify first that ȳN ≥ 0 by the truncation method([10]). Consider

H(ȳN ) is C1.1 cutoff function for −∞ < ȳN <∞ given by H(ȳN ) =
ȳ2N
2 for
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−∞ ≤ ȳN < 0 and H(ȳN ) = 0 for 0 ≤ ȳN <∞.
If we put

ψ(t) =

∫ L

0

H(ȳN (t))dx, 0 ≤ t ≤ T,

then ψ(t) is continuously differentiable function with the derivative

d

dt
ψ(t) =

∫ L

0

H ′(ȳN (t))ȳ′N (t)dx

=

∫ L

0

H ′(ȳN (t))
(
d
∂2ȳN
∂x2

− γ(ρ̄N )ȳN − fȳN + g|ρ̄N |
)
dx

=d

∫ L

0

H ′(ȳN (t))
∂2ȳN
∂x2

dx−
∫ L

0

H ′(ȳN (t))γ(ρ̄N )ȳNdx

− f
∫ L

0

H ′(ȳN (t))ȳNdx+ g

∫ L

0

H ′(ȳN (t))|ρ̄N |dx

=− a
∫ L

0

∣∣∣∂H ′(ȳN (t))

∂x

∣∣∣2dx− c∫ L

0

H ′(ȳN (t))ȳNdx

− f
∫ L

0

H ′(ȳN (t))ȳNdx+ g

∫ L

0

H ′(ȳN (t))|ρ̄N |dx.

Since H ′(ȳN ) ≤ 0, H ′(ȳN )ȳN ≥ 0, we obtain

d

dt
ψ(t) ≤ 0.

Therefore, ψ(t) ≤ ψ(0) for 0 ≤ t ≤ T . Thus, ψ(0) = 0 implies ψ(t) = 0, that is,
ȳN (t) ≥ 0 for 0 ≤ t ≤ T . Similarily, we obtain that ρ̄N (t) ≥ 0 for 0 ≤ t ≤ T .
We conclude that FN (t, Y N ) = FN (t, Y N ). Thus we see that Y N is a solution
of (3.5). By the uniqueness, we see that Y N (t) = YN (t) for 0 ≤ t ≤ T .

If we choose N > 2max{‖y0‖L∞(I), ‖ρ0‖L∞(I)}, there exists s ∈ (0, T ) such
that

Ms+ ‖y0‖L∞(I) ≤
N

2
, Ms+ ‖ρ0‖L∞(I) ≤

N

2
.

From (3.7) and (3.8), we derive that |yN | ≤ N, |ρN | ≤ N for all t ∈ (0, s). Thus
FN (t, yN , ρN ) = F (t, y, ρ) for (t, x) ∈ (0, s)× I, so Y =

(
y
ρ

)
is the local solution

of (3.1) defined on (0, s)× I. �

4. Existence of the optimal control

Let S > 0 be such that for each u ∈ Uad, (3.1) has a unique strong solution
Y (u) ∈ W 1,2(0, S;H) ∩ L2(0, S;D(A)) satisfying (3.3) and (3.4). Thus, the
problem (P) is obviously formulated as follows:

(P) minimize J (u),
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where

J (u) =

∫ S

0

‖Y (u)− Yd‖2Hdt+ γ‖u‖2H1(0,S), u ∈ Uad.

Here, Y =
(
y
ρ

)
and Yd =

(
yd
ρd

)
is a fixed element of L2(0, S;H) with yd, ρd ∈

L2(0, S;L2(I)). γ is a positive constant. Then, we have the following result.

Theorem 4.1. There exists an optimal control u∗ ∈ Uad for (P) such that
J (u∗) = min

u∈Uad
J (u).

Proof. Let {un} ⊂ Uad be a minimizing sequence such that

lim
n→∞

J (un) = min
u∈Uad

J (u).

Since {un} is bounded in H1(0, T ), we can assume that un → u∗ weakly in
H1(0, T ). By the compactness of H1(0, T ) ↪→ L2(0, T ), we see that

un → u∗ strongly in L2(0, T ). (4.1)

Let Yn =
(
yn
ρn

)
be the solution of (3.1) corresponding to un. That is, Yn =

(
yn
ρn

)
is the solution of the following equations

∂yn
∂t

= d
∂2yn
∂x2

− γ(ρn)yn − fyn + gρn in I × (0, S],

∂ρn
∂t

= fyn − hρn − un(t)ρn in I × (0, S], (4.2)

∂yn
∂x

(0, t) =
∂yn
∂x

(L, t) = 0 on (0, S],

yn(x, 0) = y0(x), ρn(x, 0) = ρ0(x) in I.

Then, we see from (3.3) and (3.4) that

∥∥∥∂yn
∂t

∥∥∥
L2(0,S;L2(I))

, ‖yn‖L2(0,S;H2(I)), ‖yn‖H1(I), ‖yn‖L∞((0,S)×I) ≤ C, (4.3)

∥∥∥∂ρn
∂t

∥∥∥
L2(0,S;L2(I))

, ‖ρn‖L∞((0,S)×I), ‖ρn‖L2(I) ≤ C. (4.4)
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Therefore, it is seen from (4.3) and (4.4) that there exists y∗ such that

∂yn
∂t
→ ∂y∗

∂t
weakly in L2(0, S;L2(I)),

∂2yn
∂x2

→ ∂2y∗

∂x2
weakly in L2(0, S;L2(I)),

yn → y∗ weakly star in L∞(0, S;H1(I)),

yn → y∗ weakly star in L∞((0, S)× I),

∂ρn
∂t
→ ∂ρ∗

∂t
weakly in L2(0, S;L2(I))

ρn → ρ∗ weakly star in L∞(0, S;L2(I))

ρn → ρ∗ weakly star in L∞((0, S)× I).

Since H1(I) is compactly embedded in L2(I), we deduce that {yn} is relatively
compact in C([0, S];L2(I))([9]). Therefore, we see that

yn → y∗ strongly in C([0, S];L2(I)). (4.5)

Furthermore, mulitplying the second equation in (4.2) by ρn we obtain∫
I

ρ2
ndx =

∫
I

ρ2
0dx+ 2

∫ t

0

∫
I

(fyn − hρn − un(τ)ρn)ρndxdτ. (4.6)

From (4.6), we have∣∣∣ ∫
I

ρ2
n(t, x)dx−

∫
I

ρ2
n(s, x)dx

∣∣∣ ≤ C|t− s|, ∀t, s ∈ [0, S].

So, by Arzela-Ascoli Theorem, we can assume that

ρn → ρ∗ strongly in L2(I) uniformly with respect to t ∈ [0, S]. (4.7)

Now we show that Y ∗ =
(
y∗

ρ∗

)
is the solution of (3.1) with respect to u∗. We

first show that

γ(ρn)yn → γ(ρ∗)y∗ strongly in L2(0, S;L2(I)). (4.8)

Indeed, since ρ∗, ρn, yn ∈ L∞((0, S)× I), we have∫ S

0

∫
I

(
γ(ρn)yn − γ(ρ∗)y∗

)2
dxdt

≤ C
∫ S

0

∫
I

(ρn + ρ∗ − 2b)2(ρn − ρ∗)2y2
ndxdt+ C

∫ S

0

∫
I

γ(ρ∗)2(yn − y∗)2dxdt

≤ C
(∫ S

0

∫
I

(ρn − ρ∗)2dxdt+

∫ S

0

∫
I

(yn − y∗)2dxdt
)
.
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From (4.5)and (4.7), we see that (4.8) is satisfied. Furthermore, since y∗ ∈
L∞((0, S)× I), we have∫ S

0

∫
I

(un(t)yn − u∗(t)y∗)2dxdt

≤ C
(
‖un‖L∞(0,S)‖yn − y∗‖L2(0,S;L2(I)) + ‖un(t)− u(t)‖L2(0,S)‖y∗‖L∞(0,S;L∞(I))

)
≤ C

(
‖un‖H1(0,S)‖yn − y∗‖L2(0,S;L2(I)) + ‖un(t)− u(t)‖L2(0,S)‖y∗‖L∞(0,S;L∞(I))

)
.

By using (4.1) and (4.5) we have

unyn → u∗y∗ strongly in L2(0, S;L2(I)).

Therefore, Y ∗ =
(
y∗

ρ∗

)
is solution of (3.1) with respect to u∗. Since Yn − Yd is

strongly convergent to Y ∗ − Yd in L2(0, T ;H), we have:

min
u∈Uad

J (u) ≤ J (u∗) ≤ lim inf
n→∞

J (un) = min
u∈Uad

J (u).

Hence, J (u∗) = min
u∈Uad

J (u). �
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