1 |
A. Yagi, Abstract parabolic evolution equations and their applications, Springer-Verlag, Berlin, 2010.
|
2 |
M. Ya. Antonovsky, E.A. Aponina, Yu. A. Kuznetsov, Spatial-temporal structure of mixed-age forest boundary: The simplest mathematical model, WP-89-54. Laxenburg, Austria: International Institute for Applied Systems Analysis 1989.
|
3 |
M. Ya. Antonovsky, E. A Aponina, Yu. A. Kuznetsov, On the stability analysis of the standing forest boundary, WP-91-010. Laxenburg, Austria: International Institute for Applied Systems Analysis 1991.
|
4 |
N. C. Apreutesei, An optimal control prolem for a pest, predator, and plant system, Nonlinear Anal. RWA 13 (2012), 1391-1400.
DOI
ScienceOn
|
5 |
N. Apreutesei, G. Dimitriu and R. Strugariu, An optimal control prolem for a two-prey and one-predator model with diffusion, Comput. Math. Appl. 67 (2014), 2127-2143.
DOI
ScienceOn
|
6 |
V. Barbu, Mathematical Methods in Optimization of Differential Systems, Kluwer Academic Publishers, Dordrecht, 1994.
|
7 |
A.J.V. Brandao, E. Fernandez-Cara, P.M.D. Magalhaes, M.A. Rojas-Medar, Theoretical analysis and control results for the FitzHugh-Nagumo equation, Electron. J. Differential Equations, 2008 (2008), no. 164, 1-20.
|
8 |
L. Zhang and B. Liu, Optimal control prolem for an ecosystem with two competing preys and one predator, J. Math. Anal. Appl. 424 (2015), 201-220.
DOI
ScienceOn
|
9 |
S.-U. Ryu and A. Yagi, Optimal control of Keller-Segel equations, J. Math. Anal. Appl. 256 (2001), 45-66.
DOI
ScienceOn
|
10 |
J. Simon, Compact sets in the space (0, T; B), Ann. Mat. Pura Appl. 146 (1987), 65-96.
|