Browse > Article
http://dx.doi.org/10.7858/eamj.2015.022

OPTIMAL CONTROL FOR THE FOREST KINEMATIC MODEL  

Ryu, Sang-Uk (Department of Mathematics, Jeju National University)
Publication Information
Abstract
This paper is concerned with the optimal control for the forest kinematic model. That is, we show the exiatence of the strong solution for the forest kinematic model and then show the existence of the optimal control.
Keywords
Forest kinematic model; Optimal control;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Yagi, Abstract parabolic evolution equations and their applications, Springer-Verlag, Berlin, 2010.
2 M. Ya. Antonovsky, E.A. Aponina, Yu. A. Kuznetsov, Spatial-temporal structure of mixed-age forest boundary: The simplest mathematical model, WP-89-54. Laxenburg, Austria: International Institute for Applied Systems Analysis 1989.
3 M. Ya. Antonovsky, E. A Aponina, Yu. A. Kuznetsov, On the stability analysis of the standing forest boundary, WP-91-010. Laxenburg, Austria: International Institute for Applied Systems Analysis 1991.
4 N. C. Apreutesei, An optimal control prolem for a pest, predator, and plant system, Nonlinear Anal. RWA 13 (2012), 1391-1400.   DOI   ScienceOn
5 N. Apreutesei, G. Dimitriu and R. Strugariu, An optimal control prolem for a two-prey and one-predator model with diffusion, Comput. Math. Appl. 67 (2014), 2127-2143.   DOI   ScienceOn
6 V. Barbu, Mathematical Methods in Optimization of Differential Systems, Kluwer Academic Publishers, Dordrecht, 1994.
7 A.J.V. Brandao, E. Fernandez-Cara, P.M.D. Magalhaes, M.A. Rojas-Medar, Theoretical analysis and control results for the FitzHugh-Nagumo equation, Electron. J. Differential Equations, 2008 (2008), no. 164, 1-20.
8 L. Zhang and B. Liu, Optimal control prolem for an ecosystem with two competing preys and one predator, J. Math. Anal. Appl. 424 (2015), 201-220.   DOI   ScienceOn
9 S.-U. Ryu and A. Yagi, Optimal control of Keller-Segel equations, J. Math. Anal. Appl. 256 (2001), 45-66.   DOI   ScienceOn
10 J. Simon, Compact sets in the space $L^p$(0, T; B), Ann. Mat. Pura Appl. 146 (1987), 65-96.