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1. INTRODUCTION 

 
Laumond[2] showed the controllability of a multiple trailer 

system. Murray and Sastry[3] provided the way of developing 
many controllers to steer and to stabilize nonholonomic 
mechanical system, including the multiple trailer system. And 
Chung[4] found most controllable passive trailer system by 
comparing tracking error and stability of various passive 
trailers that have different features according to their 
mechanical structure and parameters.[4] 

Until now, chained mobile robot systems have been studied 
mostly from the viewpoint of the control and analysis of 
nonholonomic mechanical systems. On the other hand, the 
closed form kinematic modeling has not been mentioned in 
literature, which would be beneficial in the analysis and 
design of such systems.  

This paper focuses on a closed-form kinematic modeling 
for a chained mobile robot system, which will in turn be very 
useful in kinematic analysis, design and modeling of systems 
with similar structures. In section 2, the kinematic model of a 
3 wheeled 2 DOF mobile robot is described. Then in section 3, 
the kinematic model of the chained form mobile robot is 
presented. Section 4 illustrates simulation results for the 
chained form mobile robot. Finally, some concluding remarks 
and future works are presented in section 5. 

  
 
2. KINEMATIC MODEL OF 3 WHEELS AND 2 

DOF MOBILE ROBOT 
 

In this section, the kinematic model of a mobile robot with 
two fixed wheels and a caster wheel is described[1].  

 
2.1 Kinematic model of a fixed wheel 
 

Fig. 1 represents a schematic of a mobile robot having two 
fixed wheels and a caster wheel. The platform of the mobile 
robot is a triangle with width l  and length ( )a b+ . The 
radius of each wheel is r , and the length of the link of the 
caster wheel is d . The local coordinate body frame is 
attached at the center of the platform of the mobile robot.  

The output velocity vector of the mobile robot and the joint 
velocity vector of the two fixed wheels are defined as 

 
( ) ,T

bx byu v v ω=!                 (1) 
* ( , , ) ,T

i i i skivφ η θ=! !!  ( 1, 2)i =           (2) 
 
respectively, where iη!  and skiv  represent a rotational 
velocity about the Ẑ  axis and a skidding velocity along the 
the direction of the wheel axis. Here, skiv  is included as an 
augmented velocity variable. The velocity relationship 
between the output vector of the mobile robot and the joint 
variables of each of the two wheels can be written in a matrix 
form as 
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Fig.1. 2 DOF mobile robot 
 
When 0r ≠ , the inverse kinematics of Eq. (3) is obtained 

as  
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2.2 Kinematic model of a caster wheel 
 

The kinematics of a caster wheel is derived as [1] 
 

3 3[ ] ,uu Gφ φ= !!                 (6) 

 
where 

3 3
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The inverse kinematics of Eq. (7) is obtained as  
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2.3 Kinematic model of a single mobile robot  

 
The kinematic model of a single mobile robot driven by 

two fixed wheels(i.e., differential driven) is derived in this 
section[1]. The inverse Jacobian matrix for each fixed wheel is 
obtained by including the skidding velocity vector as a 
augmented variable( 1 2f sk skv v v= = ) into the input vector. 
The inverse kinematic relationship between an augmented 
joint velocity vector(

1 2( )T
a fvφ θ θ=! ! ) and the output velocity 

vector( ( )Tbx byu v v ω=! ) is obtained as 
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by selecting three rows corresponding to the three input 
variables from Eq. (5). 

The forward kinematic relationship between the augmented 
input vector and the output velocity vector of a single mobile 
robot is obtained as 
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by taking inverse of Eq. (10). 

If there is no skidding velocity, the forward kinematic 
equation is obtained as  
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             (12) 

 
by substituting constraint 0fv =  into Eq. (11). 

3. KINEMATIC MODELING OF CHAINED 
FORM MOBILE ROBOT 

 
3.1 Kinematic modeling 

 
The closed-form kinematic model of a chained form mobile 

robot consisting of n  trailers is derived in this section. Fig. 2 
represents the kinematic diagram of a chained form mobile 
robot. It is assumed for simplicity that each mobile robot is a 
differential driven type and two adjacent mobile robots are 
connected by a revolute joint. Chung, et al[4] suggested that 
this type of module exhibits the best kinematic performance as 
compared to other previous types. To obtain the kinematic 
relationship among trailers, every trailer following its front 
trailer is modeled as a caster wheel as displayed in Fig. 3. 
More specifically, the following trailer can be visualized as 
two caster wheels having two offsets, as shown in Fig. 4. 

 

 
 

Fig. 2. Chained form mobile robot 
 

 
 

Fig. 3. Modeling the following trailer as a caster wheel 
 

 
 

Fig. 4. Path of velocity constraints 
 
To obtain the kinematic model of the system, we apply the 

above mentioned kinematic modeling method of the caster 
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wheel which was described in the previous section. 
The kinematic model relating the output vector of the first 

trailer to the joint vector in the first path of Fig.4 is obtained as 
 

1 1[ ] ,u
i i iu Gφ φ= !!                 (13) 

 
where 
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In the same manner, the kinematic model of the second path 

is obtained as  
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Fig. 5. Layout of trailer 
 
For simplicity, we analyze a three-trailer model displayed 

in Fig. 5. From Eq. (13), (14), (17), and (18), the inverse 
kinematics of the second trailer are derived as follows 
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Now the kinematics of the following trailer can be derived 

by selecting two rows corresponding to the input joints 
(

1 ( 1)1 ( 1)2( , )T
i i iθ θ θ+ + +=! ! ! ) from Eq. (21) and (23): 
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A chained form mobile robot consists of many trailers 

connected in series. So the velocities of the wheels of each 
trailer can be represented as an iterative form given by 
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1
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             1
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From the equations (27) through (34), we can obtain the 

velocity relationship between the leading trailer and the 
following trailers as 
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By combining the above equations into a matrix form, the 

final closed-form kinematic model of chained form mobile 
robots can be found as  

 

a r

c

l

d

d



ICCAS2003                           October 22-25, Gyeongju TEMF Hotel, Gyeongju, Korea      
 

12

23

3 14

1

.p

nn

P
P
P

P

θ
θ

θ θθ

θ −

   
   
   
   = =
   
   
     

!
!

! !!

""
!

              (40) 

 
Now, it can be said from Eq. (40) that the motion of the 

following trailers and kinematically dependent to the front 
trailer. Though this fact is not new, the closed form given by 
Eq. (40) is no priori. 

 
3.2 Kinematic relationship between iψ!  and 1u!  

 
From Eq. (21), we can derive the relationship between iψ!  

and 1u!  as follows 
1
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Writing the above equations into a matirix form yields 
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(46) 

 
From Eq. (46) the steering angles of adjacent mobile robots 

can be obtained. Thus, Eq (46) is useful in the trajectory 
planning or in the design of such trailer system. 

 
4. SIMULATION RESULTS 

 
4.1 Description of kinematic parameters 

 
In this paper, we analyze a chained form mobile robot 

consisting of three trailers as an illustrative example. The 
kinematic parameters of this system are given in Table 1. 
Several simulations for following several specified trajectories 
such as line, curve, and circle are being conducted. 
 

Table 1. Physical dimensions(m) of a trailer 
 

 Length 

a 0.09 m 

c 0.08 m 

d 0.08 m 

l 0.1 m 

r 0.02 m 

 
4.2 Simulation for a straight line trajectory 

 
The first trajectory is a line with its length of 3m. The 

mobile robot is commanded to follow this trajectory in 3 
seconds. For simplicity, the three trailers are initially aligned 
on a straight line. Fig. 6 represents the simulation result 
following the specified line trajectory. It is observed that the 
mobile robot moves successfully along the vertical line. Note, 
in particular, that because the chained mobile robot moves 
along the straight line without steering, the velocity and 
position trajectories of the wheels of each trailer are the same 
as shown Fig. 7.  
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Fig. 6. Simulation result for a straight line trajectory 
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(a) Velocity profile of the first trailer 
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(b) Position profile of the first trailer 

Fig. 7. Simulation result for a line trajectory 
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4.3 Simulation for a curved line trajectory 
 

The second trajectory is a curved line with its total arc 
length of 3m. This arc trajectory is realized by combining a 
translational forward velocity of 1 m/s with a angular velocity 
of 0.1rad/s. Again, for simplicity, all three trailers are also 
initially aligned on the straight line. Fig. 8 represents the 
planar view of the simulation results. It is observed that the 
mobile robot follows along the curved line successively. In 
Fig. 9, it can be noted that magnitudes of velocity and position 
of the left wheel is greater then those of velocity and position 
of the right wheel because the trajectory is curved to the right 
side. And the simulated results for the other trailer are similar 
to this result as can be seen in Fig. 9. 
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Fig. 8. Simulation result for a curved line trajectory 
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(a) Velocity profile of the first trailer 
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(b) Position profile of the first trailer 

Fig. 9. Simulation result for a curved line trajectory 

 
4.4 Simulation for a circular trajectory 
 

The third trajectory forms a circle by giving a constant 
forward velocity - 2m/s and a constant angular velocity 
0.2rad/s. The trailers are initially on the straight line and then 
gradually enter the circle whose radius is given 1m. 

Fig. 10 represents the planar view of the simulation result. It 
can be seen that the mobile robot follows along the circular 
line successfully. 

Note, however, that since the trailers are initially aligned on 
the straight line as shown in Fig. 10, the first trailer is right on 
the circular track from the start, while the second and third 
trailers, which are not on the track, have to enter the circular 
track with a little swinging Thus it can be seen from the 
simulation results that the steering angles of the trailer robot 
are successively converged to constant values in a short time. 
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Fig. 10. Simulation result for a circular trajectory 

 
4.5 Simulation for the steering angles 
 

Fig. 11 represents the simulation result of 1ψ  and 2ψ , 
which are obtained from Eq. (46). The upper line printed as a 
series of “*” represents 2ψ  and the lower line as a series of 

“o” represents 1ψ . 
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Fig. 11. Simulation result of the steering angles 1ψ  and 2ψ  
 
 

5. CONCLUSION 
 

In this paper, we focused on the kinematic modeling of 
chained form mobile robots. Firstly, a closed form kinematic 
model of chained form mobile robots is derived. Then the 
effectiveness of this modeling method is confirmed through 
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various types of trajectory-following simulations for a mobile 
system consisting of three trailers. We firmly believe that this 
closed form kinematic model is beneficial to the geometric 
analysis and design of this kind of chained form mobile 
systems. Our future work would be 1) to derive a closed form 
dynamic model of the chained form mobile robot and 2) to 
investigate the design issue of the chained form mobile robots, 
based on the closed form kinematic and dynamic models. 
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