References
- M. Ya. Antonovsky, E.A. Aponina, Yu. A. Kuznetsov, Spatial-temporal structure of mixed-age forest boundary: The simplest mathematical model, WP-89-54. Laxenburg, Austria: International Institute for Applied Systems Analysis 1989.
- M. Ya. Antonovsky, E. A Aponina, Yu. A. Kuznetsov, On the stability analysis of the standing forest boundary, WP-91-010. Laxenburg, Austria: International Institute for Applied Systems Analysis 1991.
- N. C. Apreutesei, An optimal control prolem for a pest, predator, and plant system, Nonlinear Anal. RWA 13 (2012), 1391-1400. https://doi.org/10.1016/j.nonrwa.2011.11.004
- N. Apreutesei, G. Dimitriu and R. Strugariu, An optimal control prolem for a two-prey and one-predator model with diffusion, Comput. Math. Appl. 67 (2014), 2127-2143. https://doi.org/10.1016/j.camwa.2014.02.020
- V. Barbu, Mathematical Methods in Optimization of Differential Systems, Kluwer Academic Publishers, Dordrecht, 1994.
- A.J.V. Brandao, E. Fernandez-Cara, P.M.D. Magalhaes, M.A. Rojas-Medar, Theoretical analysis and control results for the FitzHugh-Nagumo equation, Electron. J. Differential Equations, 2008 (2008), no. 164, 1-20.
- L. Zhang and B. Liu, Optimal control prolem for an ecosystem with two competing preys and one predator, J. Math. Anal. Appl. 424 (2015), 201-220. https://doi.org/10.1016/j.jmaa.2014.10.093
- S.-U. Ryu and A. Yagi, Optimal control of Keller-Segel equations, J. Math. Anal. Appl. 256 (2001), 45-66. https://doi.org/10.1006/jmaa.2000.7254
-
J. Simon, Compact sets in the space
$L^p$ (0, T; B), Ann. Mat. Pura Appl. 146 (1987), 65-96. - A. Yagi, Abstract parabolic evolution equations and their applications, Springer-Verlag, Berlin, 2010.