• Title/Summary/Keyword: Kernel estimate

Search Result 141, Processing Time 0.022 seconds

A Study on the Trade Area Analysis Model based on GIS - A Case of Huff probability model - (GIS 기반의 상권분석 모형 연구 - Huff 확률모형을 중심으로 -)

  • Son, Young-Gi;An, Sang-Hyun;Shin, Young-Chul
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.10 no.2
    • /
    • pp.164-171
    • /
    • 2007
  • This research used GIS spatial analysis model and Huff probability model and achieved trade area analysis of area center. we constructed basic maps that were surveyed according to types of business, number of households etc. using a land registration map of LMIS(Land Management Information System) in Bokdae-dong, Cheongju-si. Kernel density function and NNI(Nearest Neighbor Index) was used to estimate store distribution center area in neighborhood life zones. The center point of area and scale were estimated by means of the center area. Huff probability model was used in abstracting trade areas according to estimated center areas, those was drew map. Therefore, this study describes method that can apply in Huff probability model through kernel density function and NNI of GIS spatial analysis techniques. A trade area was abstracted more exactly by taking advantage of this method, which will can aid merchant for the foundation of small sized enterprises.

  • PDF

Simulation of Hourly Precipitation using Nonhomogeneous Markov Chain Model and Derivation of Rainfall Mass Curve using Transition Probability (비동질성 Markov 모형에 의한 시간강수량 모의 발생과 천이확률을 이용한 강우의 시간분포 유도)

  • Choi, Byung-Kyu;Oh, Tae-Suk;Park, Rae-Gun;Moon, Young-Il
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.3
    • /
    • pp.265-276
    • /
    • 2008
  • The observed data of enough period need for design of hydrological works. But, most hydrological data aren't enough. Therefore in this paper, hourly precipitation generated by nonhomogeneous Markov chain model using variable Kernel density function. First, the Kernel estimator is used to estimate the transition probabilities. Second, wet hours are decided by transition probabilities and random numbers. Third, the amount of precipitation of each hours is calculated by the Kernel density function that estimated from observed data. At the results, observed precipitation data and generated precipitation data have similar statistic. Also, rainfall mass curve is derived by calculated transition probabilities for generation of hourly precipitation.

The Price of Risk in the Korean Stock Distribution Market after the Global Financial Crisis (글로벌 금융위기 이후 한국 주식유통시장의 위험가격에 관한 연구)

  • Sohn, Kyoung-Woo;Liu, Won-Suk
    • Journal of Distribution Science
    • /
    • v.13 no.5
    • /
    • pp.71-82
    • /
    • 2015
  • Purpose - The purpose of this study is to investigate risk price implied from the pricing kernel of Korean stock distribution market. Recently, it is considered that the quantitative easing programs of major developed countries are contributing to a reduction in global uncertainty caused by the 2007~2009 financial crisis. If true, the risk premium as compensation for global systemic risk or economic uncertainty should show a decrease. We examine whether the risk price in the Korean stock distribution market has declined in recent years, and attempt to provide practical implications for investors to manage their portfolios more efficiently, as well as academic implications. Research design, data and methodology - To estimate the risk price, we adopt a non-parametric method; the minimum norm pricing kernel method under the LOP (Law of One Price) constraint. For the estimation, we use 17 industry sorted portfolios provided by the KRX (Korea Exchange). Additionally, the monthly returns of the 17 industry sorted portfolios, from July 2000 to June 2014, are utilized as data samples. We set 120 months (10 years) as the estimation window, and estimate the risk prices from July 2010 to June 2014 by month. Moreover, we analyze correlation between any of the two industry portfolios within the 17 industry portfolios to suggest further economic implications of the risk price we estimate. Results - According to our results, the risk price in the Korean stock distribution market shows a decline over the period of July 2010 to June 2014 with statistical significance. During the period of the declining risk price, the average correlation level between any of the two industry portfolios also shows a decrease, whereas the standard deviation of the average correlation shows an increase. The results imply that the amount of systematic risk in the Korea stock distribution market has decreased, whereas the amount of industry-specific risk has increased. It is one of the well known empirical results that correlation and uncertainty are positively correlated, therefore, the declining correlation may be the result of decreased global economic uncertainty. Meanwhile, less asset correlation enables investors to build portfolios with less systematic risk, therefore the investors require lower risk premiums for the efficient portfolio, resulting in the declining risk price. Conclusions - Our results may provide evidence of reduction in global systemic risk or economic uncertainty in the Korean stock distribution market. However, to defend the argument, further analysis should be done. For instance, the change of global uncertainty could be measured with funding costs in the global money market; subsequently, the relation between global uncertainty and the price of risk might be directly observable. In addition, as time goes by, observations of the risk price could be extended, enabling us to confirm the relation between the global uncertainty and the effect of quantitative easing. These topics are beyond our scope here, therefore we reserve them for future research.

A Study on Bandwith Selection Based on ASE for Nonparametric Regression Estimator

  • Kim, Tae-Yoon
    • Journal of the Korean Statistical Society
    • /
    • v.30 no.1
    • /
    • pp.21-30
    • /
    • 2001
  • Suppose we observe a set of data (X$_1$,Y$_1$(, …, (X$_{n}$,Y$_{n}$) and use the Nadaraya-Watson regression estimator to estimate m(x)=E(Y│X=x). in this article bandwidth selection problem for the Nadaraya-Watson regression estimator is investigated. In particular cross validation method based on average square error(ASE) is considered. Theoretical results here include a central limit theorem that quantifies convergence rates of the bandwidth selector.tor.

  • PDF

Efficiency of Aggregate Data in Non-linear Regression

  • Huh, Jib
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.2
    • /
    • pp.327-336
    • /
    • 2001
  • This work concerns estimating a regression function, which is not linear, using aggregate data. In much of the empirical research, data are aggregated for various reasons before statistical analysis. In a traditional parametric approach, a linear estimation of the non-linear function with aggregate data can result in unstable estimators of the parameters. More serious consequence is the bias in the estimation of the non-linear function. The approach we employ is the kernel regression smoothing. We describe the conditions when the aggregate data can be used to estimate the regression function efficiently. Numerical examples will illustrate our findings.

  • PDF

ON GENERALIZED WRIGHT'S HYPERGEOMETRIC FUNCTIONS AND FRACTIONAL CALCULUS OPERATORS

  • Raina, R.K.
    • East Asian mathematical journal
    • /
    • v.21 no.2
    • /
    • pp.191-203
    • /
    • 2005
  • In the present paper we first establish some basic results for a substantially more general class of functions defined below. The results include simple differentiation and fractional calculus operators(integration and differentiation of arbitrary orders) for this class of functions. These results are then invoked in determining similar properties for the generalized Wright's hypergeometric functions. Further, norm estimate of a certain class of integral operators whose kernel involves the generalized Wright's hypergeometric function, and its composition(and other related properties) with the fractional calculus operators are also investigated.

  • PDF

Nonparametric Estimation of Reliability in Time Dependent Strength-Stress Model

  • Lee, Hyun-Woo;Na, Myung-Hwan
    • Journal of the Korean Data and Information Science Society
    • /
    • v.10 no.1
    • /
    • pp.111-118
    • /
    • 1999
  • We treat the problem of estimating reliability R(t) = P[Y(t) < X(t)] in the time dependent strength-stress model in which a unit of strength X(t) is subjected to environmental stress Y(t) at time t. In this paper two nonparametric approaches to estimate of R(t) are analyzed and compared with parametric method by simulation.

  • PDF

A NUMERICAL METHOD FOR SOLVING THE NONLINEAR INTEGRAL EQUATION OF THE SECOND KIND

  • Salama, F.A.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.7 no.2
    • /
    • pp.65-73
    • /
    • 2003
  • In this work, we use a numerical method to solve the nonlinear integral equation of the second kind when the kernel of the integral equation in the logarithmic function form or in Carleman function form. The solution has a computing time requirement of $0(N^2)$, where (2N +1) is the number of discretization points used. Also, the error estimate is computed.

  • PDF

A Study on Optimization of Perovskite Solar Cell Light Absorption Layer Thin Film Based on Machine Learning (머신러닝 기반 페로브스카이트 태양전지 광흡수층 박막 최적화를 위한 연구)

  • Ha, Jae-jun;Lee, Jun-hyuk;Oh, Ju-young;Lee, Dong-geun
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.7
    • /
    • pp.55-62
    • /
    • 2022
  • The perovskite solar cell is an active part of research in renewable energy fields such as solar energy, wind, hydroelectric power, marine energy, bioenergy, and hydrogen energy to replace fossil fuels such as oil, coal, and natural gas, which will gradually disappear as power demand increases due to the increase in use of the Internet of Things and Virtual environments due to the 4th industrial revolution. The perovskite solar cell is a solar cell device using an organic-inorganic hybrid material having a perovskite structure, and has advantages of replacing existing silicon solar cells with high efficiency, low cost solutions, and low temperature processes. In order to optimize the light absorption layer thin film predicted by the existing empirical method, reliability must be verified through device characteristics evaluation. However, since it costs a lot to evaluate the characteristics of the light-absorbing layer thin film device, the number of tests is limited. In order to solve this problem, the development and applicability of a clear and valid model using machine learning or artificial intelligence model as an auxiliary means for optimizing the light absorption layer thin film are considered infinite. In this study, to estimate the light absorption layer thin-film optimization of perovskite solar cells, the regression models of the support vector machine's linear kernel, R.B.F kernel, polynomial kernel, and sigmoid kernel were compared to verify the accuracy difference for each kernel function.

A Study of Normalized Smoothed Particle Hydrodynamics (정규 완화입자유동법의 고찰)

  • 박정수;이진성;박희덕;김용석;이재민
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.89-99
    • /
    • 2003
  • Smoothed particle hydrodynamics, SPH, is a gridless Lagrangian technique which is a useful alternative numerical analysis method to simulate high velocity deformation problems as well as astrophysical and cosmological problems. The SPH method brings about some difficulties such as tensile Instability and stress oscillation. A new SPH method, so called normalized algorithm, was introduced to overcome these difficulties. In this paper we aimed to estimate this method and have developed an one-dimensional normalized SPH program. The high velocity impact model of an aluminum bar has been analysed by using the developed program and a commercial hydrocode, LS-DYNA. The obtained numerical results showed good agreement with the results of the same model in reference. The program also showed more stable results than those of LS-DYNA in stress oscillation. We hopefully expect that the developed one-dimensional normalized SPH program can be used to solve hydrodynamic problems especially for explosive detonation analysis.