Browse > Article
http://dx.doi.org/10.3741/JKWRA.2008.41.3.265

Simulation of Hourly Precipitation using Nonhomogeneous Markov Chain Model and Derivation of Rainfall Mass Curve using Transition Probability  

Choi, Byung-Kyu (The University of Seoul)
Oh, Tae-Suk (The University of Seoul)
Park, Rae-Gun (Saman Corporation)
Moon, Young-Il (The University of Seoul)
Publication Information
Journal of Korea Water Resources Association / v.41, no.3, 2008 , pp. 265-276 More about this Journal
Abstract
The observed data of enough period need for design of hydrological works. But, most hydrological data aren't enough. Therefore in this paper, hourly precipitation generated by nonhomogeneous Markov chain model using variable Kernel density function. First, the Kernel estimator is used to estimate the transition probabilities. Second, wet hours are decided by transition probabilities and random numbers. Third, the amount of precipitation of each hours is calculated by the Kernel density function that estimated from observed data. At the results, observed precipitation data and generated precipitation data have similar statistic. Also, rainfall mass curve is derived by calculated transition probabilities for generation of hourly precipitation.
Keywords
Kernel density function; Markov model; hourly precipitation;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Lettenmaier, D.P., and Burges, S. J., (1977). "An operational approach to preserving skew in hydrologic models of long-term persistence." Water Resources Research, Vol. 13, No. 2, pp. 281-290   DOI
2 Scott, D. W. (1992). Multivariate density estimation: theroy, practice and visualization. New York, Wiley
3 이창훈, 김승 (1995). "회귀분석에 의한 한국의 연.월 평균 강수량의 추정." 대한토목학회 논문집, 대한토목학회, 제15권, 제5호, pp.1255-1266
4 허준행, 김경덕, 조원철 (1997). “다변량 추계학적 모형을 이용한 낙동강 유역의 가뭄해석에 관한 연구.” 한국수자원학회 논문집, 한국수자원학회, 제30권, 2호, pp. 155-163
5 Bardsley, W.E. (1988). "Toward a general procedure for analysis of extreme random events in the earth sciences." Math. Geol., Vol. 20, No. 5, pp. 513-528   DOI
6 Chang, J.J., Kavvas, M.L., and Delleur, J.W. (1984). "Daily precipitation modeling by discrete autoregressive moving average processes" Water Resources Research, Vol. 20, No.5, pp. 556-580
7 Rudemo, M. (1982). "Empirical choice of histograms and kernel density estimators", Scand. J. Statist., Vol. 9, pp.65-78
8 Yakowitz, S. (1985). “Markov flow models and the flood warning problem.” Water Resources Research, Vol. 21, No. 1, pp. 81-88   DOI
9 Rajagopalan, B., Lall, U. and Tarboton, D. (1996). "Nonhomogeneous markov model for daily precipitation." Journal of Hydrologic Engineering, Vol. 1, No. 1, pp.33-40   DOI
10 Richardson, C. W. (1981). "Stochastic simulation of daily precipitation, temperature, and solar radiation." Water Resource Research, Vol. 17, No. 1, pp. 182-190   DOI
11 Todorovic, P. and Woolhiser, D. A. (1975). "A stochastic model of n-day precipitation." Journal of Applied Meteorology, Vol. 14, pp. 17-24   DOI
12 Lall, U., Moon, Y. I., and Bosworth, K. (1993). "Kernel flood frequency estimators: bandwidth selection and kernel choice." Water Resources Research, Vol. 29, No. 4, pp. 1003-1015   DOI   ScienceOn
13 Moon, Y. I., and Lall, U. (1994). "Kernel quantile function estimator for flood frequency analysis." Water Resources Research, Vol. 30, No. 11, pp. 3095-3103   DOI   ScienceOn
14 Gabriel, K. R., and Neumann, J. (1957). "Distribution of weather cycles by length." Quart Jour. Royal Meteor. Soc., Vol. 83, pp. 375-380   DOI
15 Moon Y.I., and Lall, U. (1996). “Atmospheric flow indices and interannual Great Salt Lake variability.”Journal of Hydrologic Engineering Vol. 1, No. 2, pp 55-61   DOI
16 Nord, J. (1975). "Some applications of markov chains", Proceedings Fourth Conference on Probability and Statistics in Atmospheric Science, Tallahas, pp.125-130
17 Bruhn, J. A., Fry, W. E., and Fick, G. W. (1980). "Simulation of daily weather data using theoretical probability distributions." Jour. Appl. Mete., Vol. 19, No. 9, pp. 1029-1036   DOI
18 이원환, 이재준 (1985). “시간적 확률구조를 고려한 일 강수량의 모의발생에 관한 연구.” 연세대학교 산업 기술연구소 논문집, 제17집, 제1권, pp. 37-46
19 이재준 (1987). 강수계열의 모의발생모델 개발. 박사학위논문, 연세대학교
20 이재준, 이정식 (2002). “시간강수계열의 강수발생과정에 대한 추계학적모형.” 한국수자원학회논문집, 한국수자원학회, 제35권, 제1호, pp. 109-124
21 차영일 (2004). 다변량 핵밀도함수를 이용한 일강수량 모의발생에 관한 연구. 박사학위논문, 서울시립대학교
22 차영일, 김범순, 문영일 (2006). “극치값 추정에 적합한 비매개변수적 핵함수 개발.” 한국수자원학회 논문집, 한국수자원학회, 제39권, 제6호, pp. 187-194   DOI
23 강경석 (2000). 다지점 일 강우모형에 의한 일 유출량의 모의발생. 박사학위논문, 인하대학교
24 한국수자원공사 (1999). 확률갈수유량 산정 및 이용방법 연구
25 Adamowski, K. (1985). “Nonparametric kernel estimation of flood frequency.” Water Resources Research, Vol. 21, No. 11, pp. 1585-1590   DOI
26 Adamowski, K., and Labatiuk, C. (1987). "Estimation of flood frequencies by a nonparametric density procedure." Hydrologic Frequency Modeling, pp.97-106
27 강태호, 이재준, 이종태 (1999). “도시하천에서의 강우, 유출 및 수질 예측(I)-시간강우계열 모형 개발 및 적용.” 대한토목학회 논문집, 대한토목학회, 제19권, 제II-1호, pp. 23-34
28 Bardsley, W.E. (1989). "Using historical data in nonparametric flood estimation." Journal of Hydrology, Vol. 108, pp. 249-255   DOI   ScienceOn
29 Bowman, A. W. (1984). "An alternative method of cross-validation for the smoothing of density estimates", Biometrika, Vol. 71, pp.353-360   DOI   ScienceOn
30 Breiman, L., W. Meisel, and Purcell, E. (1977). "Variable kernel estimates of multivariate densities." Technometrics, Vol. 19, No. 2, pp. 135-144   DOI
31 건설교통부 (2000). 한국확률강우량도