• Title/Summary/Keyword: Keratinocyte culture

Search Result 43, Processing Time 0.032 seconds

A Study on the Inhibition of Skin Pigmentation by Lobaric Acid as Protease Activated Receptor-2 Antagonist (Protease Activated Receptor-2의 길항제로서 Lobaric Acid의 피부 색소침착 억제 효능 연구)

  • Goo, Jung Hyun;Lee, Ji Eun;Myung, Cheol Hwan;Park, Jong Il;Hwang, Jae Sung
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.41 no.3
    • /
    • pp.243-252
    • /
    • 2015
  • Melanosome, the pigment granule in melanocyte, determines the color of skin when it moves into the keratinocyte. Inhibition of melanosome transfer from melanocyte to keratinocyte results in skin depigmentation. Protease activated receptor-2 (PAR-2) is involved in signal transduction systems via cell membrane and increases the melasome transfer when it is activated by cleavage of their extracellular amino acid sequence by trypsin or by a peptide such as SLIGKV. Here, we showed that lobaric acid inhibited PAR-2 activation and affected the mobilization of $Ca2^+$. The uptake of fluorescent microspheres and isolated melanosomes from melan-a melanocytes to keratinocytes induced by SLIGKV were inhibited by lobaric acid. Also, confocal microscopy studies illustrated a decreased melanosome transfer to keratinocytes in melanocyte-keratinocyte co-culture system by lobaric acid. In addition, lobaric acid induced visible skin lightening effect in human skin tissue culture model, melanoderm$^{(R)}$. Our data suggest that lobaric acid could be an effective skin lightening agent that works via regulation of phagocytic activity of keratinocytes.

In vitro culture of skin cells on a crosslinked gelatin based scaffold for artificial skin

  • Shin, In-Soo;Kwon, Oh-Hee;Kim, Soon-Nam;Hong, Choong-Man;Lee, Ki-Hong;Oh, Ho-Jung;Yoo, Si-Hyung;Lim, Jae-Hyun;Choi, Seung-Eun
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.100.2-101
    • /
    • 2003
  • To satisfy the increasing medical demanding especially for sever burn patients to regenerate full thickness wound cure, this study developed dermis with gelatin based scaffold and perform the biocompatibility tests. To prepare scaffold 30% of gelatin was mixed with sieved salt and dried in the mold to shape then, cross linked with a water-soluble cross-linker, EDAC. Preparing the cell for seeding from a rabbit skin, the fibroblast and keratinocyte were successfully isolated and cultured in vitro. After cell and scaffold were ready, the fibroblast was seeded to the scaffold (∼10$\^$6/ cell/cm ) for preparing dermis and keratinocyte was cultured until forming the sheet. (omitted)

  • PDF

Growth Factors Upregulated by Uric Acid Affect Guanine Deaminase-Induced Melanogenesis

  • Nan-Hyung Kim;Ai-Young Lee
    • Biomolecules & Therapeutics
    • /
    • v.31 no.1
    • /
    • pp.89-96
    • /
    • 2023
  • Uric acid produced by guanine deaminase (GDA) is involved in photoaging and hyperpigmentation. Reactive oxygen species (ROS) generated by uric acid plays a role in photoaging. However, the mechanism by which uric acid stimulates melanogenesis in GDA-overexpressing keratinocytes is unclear. Keratinocyte-derived paracrine factors have been identified as important mechanisms of ultraviolet-induced melanogenesis. Therefore, the role of paracrine melanogenic growth factors in GDA-induced hypermelanosis mediated by uric acid was examined. The relationships between ROS and these growth factors were examined. Primary cultured normal keratinocytes overexpressed with wild type or mutant GDA and those treated with xanthine or uric acid in the presence or absence of allopurinol, H2O2, or N-acetylcysteine (NAC) were used in this study. Intracellular and extracellular bFGF and SCF levels were increased in keratinocytes by wild type, but not by loss-of-function mutants of GDA overexpression. Culture supernatants from GDA-overexpressing keratinocytes stimulated melanogenesis, which was restored by anti-bFGF and anti-SCF antibodies. Allopurinol treatment reduced the expression levels of bFGF and SCF in both GDA-overexpressing and normal keratinocytes exposed to exogenous xanthine; the exogenous uric acid increased their expression levels. H2O2-stimulated tyrosinase expression and melanogenesis were restored by NAC pretreatment. However, H2O2 or NAC did not upregulate or downregulate bFGF or SCF, respectively. Overall, uric acid could be involved in melanogenesis induced by GDA overexpression in keratinocytes via bFGF and SCF upregulation not via ROS generation.

Inducing re-epithelialization in skin wound through cultured oral mucosal keratinocytes

  • Kim, Hyun Sil;Kim, Nam Hee;Kim, Jin;Cha, In Ho
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.39 no.2
    • /
    • pp.63-70
    • /
    • 2013
  • Objectives: The purpose of this study was to investigate the wound healing effect of primary cultured oral mucosal keratinocytes (OMKs) and to assess their roles in skin wounds. Materials and Methods: OMK labeled with BromodeoxyUridine were scattered onto $1.5{\times}1.5$ cm skin defects of adult female nude mice (OMK group, n=15). For the control, culture media were placed on the wound (control group, n=15). Mice in both groups were sacrificed at three days (n=5), one week (n=5), and two weeks (n=5), and histomorphometric and immunoblot analyses with keratinocyte growth factor (KGF), interleukin (IL)-6, and IL-$1{\alpha}$ antibody were performed for the biopsied wound specimen. To verify the effect of the cytokine, rhIL-$1{\alpha}$ was applied instead of OMK transplantation, and the OMK and control groups were compared with regard to re-epithelialization. Results: Histomorphometric analyses demonstrated faster re-epithelialization in the graft group than in the control group at the third day, first week, and second week. Newly forming epithelium showed maintenance of the histological character of the skin epithelium. The graft group showed superior expression of KGF, IL-6, and IL-$1{\alpha}$ protein, compared with the control group. Similar faster re-epithelialization was observed after treatment with rhIL-$1{\alpha}$ instead of OMK transplantation. Conclusion: We successfully confirmed that the graft of primary cultured OMKs promoted regeneration of skin defects. The mechanism of accelerated wound healing by primary cultured OMKs was attributed to inducement of cytokine expression as required for re-epithelialization.

Establishment of Immortalized Primary Human Foreskin Keratinocytes and Their Application to Toxicity Assessment and Three Dimensional Skin Culture Construction

  • Choi, Moonju;Park, Minkyung;Lee, Suhyon;Lee, Jeong Woo;Cho, Min Chul;Noh, Minsoo;Lee, Choongho
    • Biomolecules & Therapeutics
    • /
    • v.25 no.3
    • /
    • pp.296-307
    • /
    • 2017
  • In spite of frequent usage of primary human foreskin keratinocytes (HFKs) in the study of skin biology, senescence-induced block-age of in vitro proliferation has been a big hurdle for their effective utilization. In order to overcome this passage limitation, we first isolated ten HFK lines from circumcision patients and successfully immortalized four of them via a retroviral transduction of high-risk human papillomavirus (HPV) E6 and E7 oncogenes. We confirmed expression of a keratinocyte marker protein, keratin 14 and two viral oncoproteins in these immortalized HFKs. We also observed their robust responsiveness to various exogenous stimuli, which was evidenced by increased mRNA expression of epithelial differentiation markers and pro-inflammatory genes in response to three reactive chemicals. In addition, their applicability to cytotoxicity assessment turned out to be comparable to that of HaCaT cells. Finally, we confirmed their differentiation capacity by construction of well-stratified three dimensional skin cultures. These newly established immortalized HFKs will be valuable tools not only for generation of in vitro skin disease models but also for prediction of potential toxicities of various cosmetic chemicals.

Production of Recombinant Human Keratinocyte Growth Factor from Bombyx mori (Lepidopera: Bombycidae) Bm5 Cells (누에배양세포에서 인간형 재조합단백질 각질세포 성장인자 생산)

  • Han, Song-Yi;Jin, Cho-Yi;Kwon, Ki-Sang;Yun, Eun-Young;Goo, Tae-Won;Kim, Seung-Whan;Choi, Jong-Soon;Yu, Kweon;Kwon, O-Yu
    • Journal of Life Science
    • /
    • v.21 no.6
    • /
    • pp.907-911
    • /
    • 2011
  • Using silkworm Bombyx mori Bm5 cells, we established a stable cell line expressing the human keratinocyte growth factor (hKGF), named by the Bm5-hKGF cell, in which the protein hKGF is synthesized in the cell and secreted in the cell culture supernatant (CCS) at approximately 15-20 ng/ml. When the Bm5-hKGF cell was co-expressed with B. mori protein disulfide isomerase (bPDI) cDNA, its secretion increased by about two times the original amount. Through wound healing migration assay, it was demonstrated that the secreted hKGF included in the CCS has a very powerful biological activity of keratinocyte proliferation. We expect to produce useful human recombinant proteins from silkworm cultured cells in large quantities at low prices.

FORMATION OF BASEMENT MEMBRANE AND STRATIFICATION OF RABBIT ORAL KERATINOCYTES CULTURED ON HUMAN ACELLULAR DERMAL MATRIX (인간 무세포성 진피기질 위에 배양한 가토 구강각화상피세포의 중충화와 기저막 형성에 관한 연구)

  • Kim, Yong-Deok;Ahn, Kang-Min;Yum, Hak-Yeol;Chung, Hun-Jong;Kim, Soung-Min;Jang, Jeong-Won;Sung, Mi-Ae;Park, Hee-Jung;Hwang, Soon-Jung;Lee, Jong-Ho
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.27 no.6
    • /
    • pp.510-522
    • /
    • 2005
  • To assess the clinical applicability of bio-artificial mucosa which was made with autologous oral keratinocytes and human acellular dermal matrix, the formation of basement membrane and stratification of oral keratinocytes were evaluated. Six New Zealand white rabbits (around 2kg in weight) were anesthetized and its buccal mucosa was harvested (1.0 $\times$ 0.5cm size). Oral keratinicytes were extracted and cultured primarily with the feeder layer of pretreated NIH J2 3T3 fibroblast. These confluent cells were innoculated on the human acellular dermal matrix and cultured in multiple layer by air-rafting method. After 3, 5, 7, 10, 14 days of culture, each cultured bio-artificial mucosa was investigated the number of epthelial layer of by H&E stain and toluidine blue stain. The immuhohistochemical methods were used to evaluate the cell division capacity, the formation of basement membrane, and it's property of specific cells (PCNA, cytokeratin 14, laminin). Transmission electromicroscopy was used for the attachment between cells and matrix with the number of hemidesmosome. In result, the numbers of layer of stratified growth of oral keratinocyte cultured on the human acellular dermal matrix and the number of hemidesomal attachment between epithelial cells and human acellular dermal matrix were similar to the layers of normal oral mucosa after 10 days of culture. The cell division rate, basement membrane formation and proliferation rate increased as culture period increased. With these results, bio-artificial mucosa with autologous oral epithelial cells cultured on the acellular dermal matrix had clinically adaptable properties after 10 days' culture and this new bio-artificial mucosa model with relatively short culture time can be expected clinical applicability.

TaqMan Probe Real-Time PCR for Quantitative Detection of Mycoplasma during Manufacture of Biologics (생물의약품 제조공정에서 마이코플라스마 정량 검출을 위한 TaqMan Probe Real-Time PCR)

  • Lee, Jae Il;Kim, In Seop
    • KSBB Journal
    • /
    • v.29 no.5
    • /
    • pp.361-371
    • /
    • 2014
  • Mycoplasma is well recognized as one of the most prevalent and serious microbial contaminants of biologic manufacturing processes. Conventional methods for mycoplasma testing, direct culture method and indirect indicator cell culture method, are lengthy, costly and less sensitive to noncultivable species. In this report, we describe a new TaqMan probe-based real-time PCR method for rapid and quantitative detection of mycoplasma contamination during manufacture of biologics. Universal mycoplasma primers were used for mycoplasma PCR and mycoplasma DNA was quantified by use of a specific TaqMan probe. Specificity, sensitivity, and robustness of the real-time PCR method was validated according to the European Pharmacopoeia. The validation results met required criteria to justify its use as a replacement for the culture method. The established real-time PCR assay was successfully applied to the detection of mycoplasma from human keratinocyte and mesenchymal stem cell as well as Vero cell lines artificially infected with mycoplasma. The overall results indicated that this rapid, specific, sensitive, and robust assay can be reliably used for quantitative detection of mycoplasma contamination during manufacture of biologics.

Suppression of TNF-alpha-induced MMP-9 expression by a cell-permeable superoxide dismutase in keratinocytes

  • Song, Ha-Yong;Ju, Sung-Mi;Goh, Ah-Ra;Kwon, Dong-Joo;Choi, Soo-Young;Park, Jin-Seu
    • BMB Reports
    • /
    • v.44 no.7
    • /
    • pp.462-467
    • /
    • 2011
  • Up-regulation of selected matrix metalloproteinases (MMPs) such as MMP-9 contributes to inflammatory processes during the development of various skin diseases, such as atopic dermatitis. In this study, we examined the effect of a cell-permeable superoxide dismutase (Tat-SOD) on TNF-${\alpha}$-induced MMP-9 expression in human keratinocyte cells (HaCaT). When Tat-SOD was added to the culture medium of HaCaT cells, it rapidly entered the cells in dose- and time-dependent manners. Tat-SOD decreased TNF-${\alpha}$-induced reactive oxygen species (ROS) generation. Tat-SOD also inhibited TNF-${\alpha}$-induced NF-${\kappa}B$ DNA binding activity. Treatment of HaCaT cells with Tat-SOD significantly inhibited TNF-${\alpha}$-induced mRNA and protein expression of MMP-9, as measured by RT-PCR and Western blot analysis. In addition, Tat-SOD suppressed TNF-${\alpha}$-induced gelatinolytic activity of MMP-9. Taken together, our results indicate that Tat-SOD can suppress TNF-${\alpha}$-induced MMP-9 expression via ROS-NF-${\kappa}B$-dependent mechanisms in keratinocytes, and therefore can be used as an immunomodulatory agent against inflammatory skin diseases related to oxidative stress.

Preparation of Oligo Hyaluronic Acid by Hydrolysis and Its Application as a Cosmetic Ingredient (저분자량 히알루론산의 제조 및 화장품에의 응용)

  • Kim, Ki-Ho;Kim, Kyoung-Tae;Kim, Young-Heui;Kim, Jin-Guk;Han, Chang-Sung;Park, Sun-Hee;Lee, Bang-Yong
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.33 no.3
    • /
    • pp.189-196
    • /
    • 2007
  • In order to investigate the potential of very low molecular weight hyaluronic acid(oligo HA) as a cosmetic ingredient, we first measured its cytotoxicity in fibroblast, keratinocyte, and SIRC cell lines. For efficacy test, its moisturizing effect and penetration rate were evaluated in an artificial skin system and Caco-2 cells. Oligo HA did not show any cytotoxicity at a concentration of 300 ${\mu}g/mL$ in fibroblasts and 1,000 ${\mu}g/mL$ in keratinocytes but it showed weak proliferation. In vitro ocular test, oligo HA showed negligible cytotoxicity at the maximum concentrations used(2,000 ${\mu}g/mL$) in SIRC cells. In the test of the single and repeated cutaneous applications, oligo HA under occlusive patch did not provoke any cumulative irritation and sensitization. Oligo HA at a concentration of 0.01 % exhibited a more potent moisturizing effect than hyaluronic acid at a concentration of 0.01 %. In the permeability test using artificial skin and Caco-2 cell lines, hyaluronic acid(M.W. $1.1{\times}10^6$) was hardly observed in the down medium of the inserts. On the other hand, oligo HA(M.W. 5,000) was detected in the down medium up to 16.0 % at 6 h in Caco-2 cell culture and up to 90 % at 6 h in an artificial skin system. These results suggest that oligo HA could be useful as an active ingredient for cosmetics.