Browse > Article
http://dx.doi.org/10.7841/ksbbj.2014.29.5.361

TaqMan Probe Real-Time PCR for Quantitative Detection of Mycoplasma during Manufacture of Biologics  

Lee, Jae Il (Department of Biological Sciences and Biotechnology, Hannam University)
Kim, In Seop (Department of Biological Sciences and Biotechnology, Hannam University)
Publication Information
KSBB Journal / v.29, no.5, 2014 , pp. 361-371 More about this Journal
Abstract
Mycoplasma is well recognized as one of the most prevalent and serious microbial contaminants of biologic manufacturing processes. Conventional methods for mycoplasma testing, direct culture method and indirect indicator cell culture method, are lengthy, costly and less sensitive to noncultivable species. In this report, we describe a new TaqMan probe-based real-time PCR method for rapid and quantitative detection of mycoplasma contamination during manufacture of biologics. Universal mycoplasma primers were used for mycoplasma PCR and mycoplasma DNA was quantified by use of a specific TaqMan probe. Specificity, sensitivity, and robustness of the real-time PCR method was validated according to the European Pharmacopoeia. The validation results met required criteria to justify its use as a replacement for the culture method. The established real-time PCR assay was successfully applied to the detection of mycoplasma from human keratinocyte and mesenchymal stem cell as well as Vero cell lines artificially infected with mycoplasma. The overall results indicated that this rapid, specific, sensitive, and robust assay can be reliably used for quantitative detection of mycoplasma contamination during manufacture of biologics.
Keywords
Mycoplasma detection; TaqMan probe; Real-time PCR; Validation; Biologics;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Razin, S., D. Yogev, and Y. Naot (1998) Molecular biology and pathogenicity of mycoplasmas. Microbiol. Mol. Bio. Rev. 62: 1094-1156.
2 Razin, S. and L. Hayflick (2010) Highlights of mycoplasma research- an historical perspective. Biologicals 38: 183-190.   DOI
3 Roger, J. M. and R. A. Nicholas (1998) Introduction. pp. 1-6. In J. M. Roger and R. A. Nicholas (eds.). Mycoplasma protocols. Human Press, New Jersey, USA.
4 Masover, G. and L. Hayflick (1981) The genera Mycoplasma, Ureaplasma and Acholeplasma and associated organisms (Thermoplasmas and Anaeroplasmas). pp. 2247-2270. In M. P. Starr, H. Stolp, H. G. Truper, A. Balows, and H. G. Schlegel (eds.). The prokaryotes. Springer-Verlag, Berlin, German.
5 Hay, R. J., M. L. Macy, and T. R. Chen (1989) Mycoplasma infection of cultured cells. Nature 339: 487-488.   DOI   ScienceOn
6 Stanbridge, E. (1971) Mycoplasmas and cell culture. Bacteriol. Rev. 35: 206-227.
7 Mirjalilia, A., E. Parmoora, S. Moradi Bidhendib, and B. Sarkari (2005) Microbial contamination of cell cultures: a 2 years study. Biologicals 33: 81-85.   DOI
8 Armstrong, S. E., J. A. Mariano, and D. J. Lundin (2010) The scope of mycoplasma contamination within the biopharmaceutical industry. Biologicals 38: 211-213.   DOI
9 European Pharmacopoeia. 6.1, section 2.6.7 Mycoplasmas.
10 Ogata, M. and K. Koshimizu (1967) Isolation of mycoplasmas from tissue cell lines and transplantable tumor cells. Jpn. J. Microbiol. 11: 289-303.   DOI
11 Chang, M. W. and K. H. Kim (1993) Detection of contaminated mycoplasmas on the cultured cell lines. J. Korean Soc. Microbiol. 28: 209-221.
12 Crispin, J. M., H. S. Kassem, S. D. Pepper, Y. Hey, T. H. Ward, and G. P. Margison (2003) Mycoplasma infection significantly alters microarray gene expression profiles. BioTechniques 35: 812-814.
13 Lawrence, B., H. Bashiri, and H. Dehghani (2010) Cross comparison of rapid mycoplasma detection platforms. Biologicals 38: 218-223.   DOI
14 Eldering, J. A., C. Felten, C. A. Veilleux, and B. J. Potts (2004) Development of a PCR method for mycoplasma testing of Chinese hamster ovary cell cultures used in the manufacture of recombinant therapeutic proteins. Biologicals 32: 183-193.   DOI   ScienceOn
15 Zhi, Y., A. Mayhew, N. Seng, and G. B. Takle (2010) Validation of a PCR method for the detection of mycoplasmas according to European Pharmacopoeia section 2.6.7. Biologicals 38: 232-237.   DOI
16 Korea Food and Drug Administration (2008) Draft guidance on the mycoplasma test suitable for cell therapy products.
17 Bruchmller, I., E. Pirkl, R. Herrmann, M. Stoermer, H. Eichler, H Klter, and P. Bugert (2006) Introduction of a validation concept for a PCR-based Mycoplasma detection assay. Cytotherapy 8: 62-69.   DOI
18 Ishikawa, Y., T. Kozakai, H. Morita, K. Saida, S. Oka, and Y. Masuo (2006) Rapid detection of mycoplasma contamination in cell cultures using SYBR Green-based real-time polymerase chain reaction. In Vitro Cell Dev. Biol. Anim. 42: 63-69.   DOI
19 Harasawa, R., H. Mizusawa, M. Fujii, J. Yamamoto, H. Mukai, T. Uemori, K. Asada, and I. Kato (2005) Rapid detection and differentiation of the major mycoplasma contaminants in cell cultures using real-time PCR with SYBR Green I and melting curve analysis. Microbiol. Immunol. 49: 859-863.   DOI
20 Stormer, M., T. Vollmer, B. Henrich, K. Kleesiek, and J. Dreier (2009) Broad-range real-time PCR assay for the rapid identification of cell-line contaminants and clinically important mollicute species. Int. J. Med. Microbiol. 299: 291-300.   DOI
21 Korea Food and Drug Administration (2003) Guidance on the validation of nucleic acid amplification tests, Korea Food & Drug Administration, Seoul, Korea.
22 Wong-Lee, J. G. and M. Lovett (1993) Rapid and sensitive PCR method for identification of mycoplasma species in tissue culture. pp. 257-260. In: D. H. Persing, T. F. Smith, F. C. Tenover, and T. J. White (eds.). Diagnostic molecular microbiology principles and applications. American Society for Microbiology, Washington, DC, USA.
23 Folmsbee, M., G. Howard, and M. McAlister (2010) Nutritional effects of culture media on mycoplasma cell size and removal by filtration. Biologicals 38: 214-217.   DOI