Browse > Article
http://dx.doi.org/10.4062/biomolther.2017.043

Establishment of Immortalized Primary Human Foreskin Keratinocytes and Their Application to Toxicity Assessment and Three Dimensional Skin Culture Construction  

Choi, Moonju (College of Pharmacy, Dongguk University)
Park, Minkyung (College of Pharmacy, Dongguk University)
Lee, Suhyon (R&D Institute, Biosolution Co., Ltd.)
Lee, Jeong Woo (Department of Urology, Dongguk University Ilsan Hospital, Dongguk University College of Medicine)
Cho, Min Chul (Department of Urology, Seoul Metropolitan Government-Seoul National University (SMG-SNU) Boramae Medical Center)
Noh, Minsoo (College of Pharmacy, Seoul National University)
Lee, Choongho (College of Pharmacy, Dongguk University)
Publication Information
Biomolecules & Therapeutics / v.25, no.3, 2017 , pp. 296-307 More about this Journal
Abstract
In spite of frequent usage of primary human foreskin keratinocytes (HFKs) in the study of skin biology, senescence-induced block-age of in vitro proliferation has been a big hurdle for their effective utilization. In order to overcome this passage limitation, we first isolated ten HFK lines from circumcision patients and successfully immortalized four of them via a retroviral transduction of high-risk human papillomavirus (HPV) E6 and E7 oncogenes. We confirmed expression of a keratinocyte marker protein, keratin 14 and two viral oncoproteins in these immortalized HFKs. We also observed their robust responsiveness to various exogenous stimuli, which was evidenced by increased mRNA expression of epithelial differentiation markers and pro-inflammatory genes in response to three reactive chemicals. In addition, their applicability to cytotoxicity assessment turned out to be comparable to that of HaCaT cells. Finally, we confirmed their differentiation capacity by construction of well-stratified three dimensional skin cultures. These newly established immortalized HFKs will be valuable tools not only for generation of in vitro skin disease models but also for prediction of potential toxicities of various cosmetic chemicals.
Keywords
Human foreskin keratinocyte; Immortalization; Toxicity assessment; Three-dimensional skin culture;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Durst, M., Dzarlieva-Petrusevska, R. T., Boukamp, P., Fusenig, N. E. and Gissmann, L. (1987) Molecular and cytogenetic analysis of immortalized human primary keratinocytes obtained after transfection with human papillomavirus type 16 DNA. Oncogene 1, 251-256.
2 Flores, E. R., Allen-Hoffmann, B. L., Lee, D., Sattler, C. A. and Lambert, P. F. (1999) Establishment of the human papillomavirus type 16 (HPV-16) life cycle in an immortalized human foreskin keratinocyte cell line. Virology 262, 344-354.   DOI
3 Fridman, A. L. and Tainsky, M. A. (2008) Critical pathways in cellular senescence and immortalization revealed by gene expression profiling. Oncogene 27, 5975-5987.   DOI
4 Halbert, C. L., Demers, G. W. and Galloway, D. A. (1991) The E7 gene of human papillomavirus type 16 is sufficient for immortalization of human epithelial cells. J. Virol. 65, 473-478.
5 Hawley-Nelson, P., Vousden, K. H., Hubbert, N. L., Lowy, D. R. and Schiller, J. T. (1989) HPV16 E6 and E7 proteins cooperate to immortalize human foreskin keratinocytes. EMBO J. 8, 3905-3910.
6 Hayflick, L. and Moorhead, P. S. (1961) The serial cultivation of human diploid cell strains. Exp. Cell Res. 25, 585-621.   DOI
7 Kiyono, T., Foster, S. A., Koop, J. I., McDougall, J. K., Galloway, D. A. and Klingelhutz, A. J. (1998) Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells. Nature 396, 84-88.   DOI
8 Lee, C. and Laimins, L. A. (2004) Role of the PDZ domain-binding motif of the oncoprotein E6 in the pathogenesis of human papillomavirus type 31. J. Virol. 78, 12366-12377.   DOI
9 Lee, C., Wooldridge, T. R. and Laimins, L. A. (2007) Analysis of the roles of E6 binding to E6TP1 and nuclear localization in the human papillomavirus type 31 life cycle. Virology 358, 201-210.   DOI
10 Lee, E., Kim, H. J., Lee, M., Jin, S. H., Hong, S. H., Ahn, S., Kim, S. O., Shin, D. W., Lee, S. T. and Noh, M. (2016) Cystathionine metabolic enzymes play a role in the inflammation resolution of human keratinocytes in response to sub-cytotoxic formaldehyde exposure. Toxicol. Appl. Pharmacol. 310, 185-194.   DOI
11 Lehman, T. A., Modali, R., Boukamp, P., Stanek, J., Bennett, W. P., Welsh, J. A., Metcalf, R. A., Stampfer, M. R., Fusenig, N., Rogan, E. M. and Harris, C. C. (1993) p53 mutations in human immortalized epithelial cell lines. Carcinogenesis 14, 833-839.   DOI
12 McGhee, E. M., Cotter, P. D., Weier, J. F., Berline, J. W., Turner, M. A., Gormley, M. and Palefsky, J. M. (2006) Molecular cytogenetic characterization of human papillomavirus16-transformed foreskin keratinocyte cell line 16-MT. Cancer Genet. Cytogenet. 168, 36-43.   DOI
13 Narita, M., Nunez, S., Heard, E., Lin, A. W., Hearn, S. A., Spector, D. L., Hannon, G. J. and Lowe, S. W. (2003) Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113, 703-716.   DOI
14 Regan, J. A. and Laimins, L. A. (2013) Viral transformation of epithelial cells. Methods Mol. Biol. 945, 449-465.
15 Serrano, M. and Blasco, M. A. (2001) Putting the stress on senescence. Curr. Opin. Cell Biol. 13, 748-753.   DOI
16 Shelton, D. N., Chang, E., Whittier, P. S., Choi, D. and Funk, W. D. (1999) Microarray analysis of replicative senescence. Curr. Biol. 9, 939-945.   DOI
17 Stewart, S. A. and Weinberg, R. A. (2002) Senescence: does it all happen at the ends? Oncogene 21, 627-630.   DOI
18 Baden, H. P., Kubilus, J., Kvedar, J. C., Steinberg, M. L. and Wolman, S. R. (1987) Isolation and characterization of a spontaneously arising long-lived line of human keratinocytes (NM 1). In Vitro Cell. Dev. Biol. 23, 205-213.   DOI
19 Stoppler, H., Hartmann, D. P., Sherman, L. and Schlegel, R. (1997) The human papillomavirus type 16 E6 and E7 oncoproteins dissociate cellular telomerase activity from the maintenance of telomere length. J. Biol. Chem. 272, 13332-13337.   DOI
20 Allen-Hoffmann, B. L., Schlosser, S. J., Ivarie, C. A., Sattler, C. A., Meisner, L. F. and O'Connor, S. L. (2000) Normal growth and differentiation in a spontaneously immortalized near-diploid human keratinocyte cell line, NIKS. J. Invest. Dermatol. 114, 444-455.   DOI
21 Ben-Porath, I. and Weinberg, R. A. (2004) When cells get stressed: an integrative view of cellular senescence. J. Clin. Invest. 113, 8-13.   DOI
22 Ben-Porath, I. and Weinberg, R. A. (2005) The signals and pathways activating cellular senescence. Int. J. Biochem. Cell Biol. 37, 961-976.   DOI
23 Boukamp, P., Petrussevska, R. T., Breitkreutz, D., Hornung, J., Markham, A. and Fusenig, N. E. (1988) Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J. Cell Biol. 106, 761-771.   DOI
24 Cheong, K. A., Kim, H. J., Kim, J. Y., Kim, C. H., Lim, W. S., Noh, M. and Lee, A. Y. (2014) Retinoic acid and hydroquinone induce inverse expression patterns on cornified envelope-associated proteins: implication in skin irritation. J. Dermatol. Sci. 76, 112-119.   DOI
25 Choi, M., Lee, S., Choi, T. and Lee, C. (2014) Roles of the PDZ domain-binding motif of the human papillomavirus type 16 E6 on the immortalization and differentiation of primary human foreskin keratinocytes. Virus Genes. 48, 224-232.   DOI
26 Choi, M. and Lee, C. (2015) Immortalization of primary keratinocytes and its application to skin research. Biomol. Ther. (Seoul) 23, 391-399.   DOI