• Title/Summary/Keyword: KdV-Burgers Equation

Search Result 4, Processing Time 0.02 seconds

KINK WAVE SOLUTIONS TO KDV-BURGERS EQUATION WITH FORCING TERM

  • Chukkol, Yusuf Buba;Muminov, Mukhiddin
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.2
    • /
    • pp.685-695
    • /
    • 2020
  • In this paper, we used modified tanh-coth method, combined with Riccati equation and secant hyperbolic ansatz to construct abundantly many real and complex exact travelling wave solutions to KdV-Burgers (KdVB) equation with forcing term. The real part is the sum of the shock wave solution of a Burgers equation and the solitary wave solution of a KdV equation with forcing term, while the imaginary part is the product of a shock wave solution of Burgers with a solitary wave travelling solution of KdV equation. The method gives more solutions than the previous methods.

THE ($\frac{G'}{G}$)- EXPANSION METHOD COMBINED WITH THE RICCATI EQUATION FOR FINDING EXACT SOLUTIONS OF NONLINEAR PDES

  • Zayed, E.M.E.
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.1_2
    • /
    • pp.351-367
    • /
    • 2011
  • In this article, we construct exact traveling wave solutions for nonlinear PDEs in mathematical physics via the (1+1)- dimensional combined Korteweg- de Vries and modified Korteweg- de Vries (KdV-mKdV) equation, the (1+1)- dimensional compouned Korteweg- de Vries Burgers (KdVB) equation, the (2+1)- dimensional cubic Klien- Gordon (cKG) equation, the Generalized Zakharov- Kuznetsov- Bonjanmin- Bona Mahony (GZK-BBM) equation and the modified Korteweg- de Vries - Zakharov- Kuznetsov (mKdV-ZK) equation, by using the (($\frac{G'}{G}$) -expansion method combined with the Riccati equation, where G = $G({\xi})$ satisfies the Riccati equation $G'({\xi})=A+BG^2$ and A, B are arbitrary constants.

A Theoretical Analysis of the Weak Shock Waves Propagating through a Bubbly Flow (기액 이상류를 전파하는 약한 충격파에 관한 이론해석적 연구)

  • Jun, Gu-Sik;Baek, Seung-Cheol;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1617-1622
    • /
    • 2004
  • Two-phase flow of liquid and gas through pipe lines are frequently encountered in nuclear power plant or industrial facility. Pressure waves which can be generated by a valve operation or any other cause in pipe lines propagate through the two-phase flow, often leading to severe noise and vibration problems or fatigue failure of pipe line system. It is of practical importance to predict the propagation characteristics of the pressure waves for the safety design for the pipe line. In the present study, a theoretical analysis is performed to understand the propagation characteristics of a weak shock wave in a bubbly flow. A wave equation is developed using a small perturbation method to analyze the weak shock wave through a bubbly flow with comparably low void fractions. It is known that the elasticity of pipe and void fraction significantly affect the propagation speed of shock wave, but the frequency of relaxation oscillation which is generated behind the shock wave is not strongly influenced by the elasticity of pipe. The present analytical results are in close agreement with existing experimental data.

  • PDF

FRACTIONAL GREEN FUNCTION FOR LINEAR TIME-FRACTIONAL INHOMOGENEOUS PARTIAL DIFFERENTIAL EQUATIONS IN FLUID MECHANICS

  • Momani, Shaher;Odibat, Zaid M.
    • Journal of applied mathematics & informatics
    • /
    • v.24 no.1_2
    • /
    • pp.167-178
    • /
    • 2007
  • This paper deals with the solutions of linear inhomogeneous time-fractional partial differential equations in applied mathematics and fluid mechanics. The fractional derivatives are described in the Caputo sense. The fractional Green function method is used to obtain solutions for time-fractional wave equation, linearized time-fractional Burgers equation, and linear time-fractional KdV equation. The new approach introduces a promising tool for solving fractional partial differential equations.