Browse > Article
http://dx.doi.org/10.4134/CKMS.c190119

KINK WAVE SOLUTIONS TO KDV-BURGERS EQUATION WITH FORCING TERM  

Chukkol, Yusuf Buba (Department of Mathematical Sciences Universiti Teknologi Malaysia)
Muminov, Mukhiddin (Department of Mathematical Sciences Universiti Teknologi Malaysia)
Publication Information
Communications of the Korean Mathematical Society / v.35, no.2, 2020 , pp. 685-695 More about this Journal
Abstract
In this paper, we used modified tanh-coth method, combined with Riccati equation and secant hyperbolic ansatz to construct abundantly many real and complex exact travelling wave solutions to KdV-Burgers (KdVB) equation with forcing term. The real part is the sum of the shock wave solution of a Burgers equation and the solitary wave solution of a KdV equation with forcing term, while the imaginary part is the product of a shock wave solution of Burgers with a solitary wave travelling solution of KdV equation. The method gives more solutions than the previous methods.
Keywords
KdVB equation; Riccati equation; secant hyperbolic ansatz; modified tanh-coth method;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. Abazari, Application of extended Tanh function method on KdV-Burgers equation with forcing term, Romanian J. Phys. 59 (2014), no. 1-2, 3-11.
2 M. Abdou, A. Hendi, and H. K. Alanzi, New exact solutions of kdv equation in an elastic tube filled with a variable viscosity fluid, Stud. Nonlinear Sci. 3 (2012), no. 2, 62-68.
3 M. A. Abdou and A. A. Soliman, Modified extended tanh-function method and its application on nonlinear physical equations, Phys. Lett. A 353 (2006), no. 6, 487-492.   DOI
4 G. Adomian, Solving frontier problems of physics: the decomposition method, Fundam. Theor. Phys. 60, Kluwer Academic Publishers Group, Dordrecht, 1994. https://doi.org/10.1007/978-94-015-8289-6
5 M. Ali Akbar, N. Hj. Mohd. Ali, and E. M. E. Zayed, Generalized and improved (G'/G)-expansion method combined with Jacobi elliptic equation, Commun. Theor. Phys. (Beijing) 61 (2014), no. 6, 669-676. https://doi.org/10.1088/0253-6102/61/6/02   DOI
6 A. M. Wazwaz, Partial differential equations and solitary waves theory, Nonlinear Physical Science, Higher Education Press, Beijing, 2009. https://doi.org/10.1007/978-3-642-00251-9
7 Z. Odibat, A Riccati equation approach and travelling wave solutions for nonlinear evolution equations, Int. J. Appl. Comput. Math. 3 (2017), no. 1, 1-13. https://doi.org/10.1007/s40819-015-0085-z   DOI
8 A. H. Salas S and C. A. Gomez S, Exact solutions for a third-order KdV equation with variable coefficients and forcing term, Math. Probl. Eng. 2009 (2009), Art. ID 737928, 13 pp. https://doi.org/10.1155/2009/737928
9 A. M. Wazwaz, The extended tanh method for new solitons solutions for many forms of the fifth-order KdV equations, Appl. Math. Comput. 184 (2007), no. 2, 1002-1014. https://doi.org/10.1016/j.amc.2006.07.002   DOI
10 A. H. A. Ali and A. A. Soliman, New exact solutions of some nonlinear partial differential equations, Int. J. Nonlinear Sci. 5 (2008), no. 1, 79-88.
11 A. M. Wazwaz, Partial differential equations and solitary waves theory, Nonlinear Physical Science, Higher Education Press, Beijing, 2009. https://doi.org/10.1007/978-3-642-00251-9
12 L. Wazzan, A modified tanh-coth method for solving the KdV and the KdV-Burgers' equations, Commun. Nonlinear Sci. Numer. Simul. 14 (2009), no. 2, 443-450. https://doi.org/10.1016/j.cnsns.2007.06.011   DOI
13 L. V. Wijngaarden, On the equations of motion for mixtures of liquid and gas bubbles, J. Fluid Mech. 33 (1968), no. 3, 465-474.   DOI
14 N. Zahibo, E. Pelinovsky, and A. Sergeeva, Weakly damped KdV soliton dynamics with the random force, Chaos Solitons Fractals 39 (2009), no. 4, 1645-1650.   DOI
15 S. Zhang, Exp-function method exactly solving the KdV equation with forcing term, Appl. Math. Comput. 197 (2008), no. 1, 128-134. https://doi.org/10.1016/j.amc.2007.07.041   DOI
16 S. Zhang and J. Li, Soliton solutions and dynamical evolutions of a generalized akns system in the framework of inverse scattering transform, Optik 137 (2017), 228-237.   DOI
17 M. Dehghan and J. Manafian, The solution of the variable coefficients fourth-order parabolic partial differential equations by the homotopy perturbation method, Z. Naturforsch. A 64 (2009), no. 7-8, 420-430.   DOI
18 A. Bekir, On traveling wave solutions to combined KdV-mKdV equation and modified Burgers-KdV equation, Commun. Nonlinear Sci. Numer. Simul. 14 (2009), no. 4, 1038-1042. https://doi.org/10.1016/j.cnsns.2008.03.014   DOI
19 E. Bilyay, B. Ozbahceci, and A. Yalciner, Extreme waves at filyos, southern black sea, Nat. Hazards Earth Syst. Sci. 11 (2011), no. 3, 659-666.   DOI
20 Y. B. Chukkol, M. N. Mohamad, and M. I. Muminov, Exact solutions to the KDV-Burgers equation with forcing term using Tanh-Coth method, AIP Conf. Proc. 1870 (2017), no. 1, 040024.
21 M. Dehghan, J. Manafian, and A. Saadatmandi, Solving nonlinear fractional partial differential equations using the homotopy analysis method, Numer. Methods Partial Differential Equations 26 (2010), no. 2, 448-479. https://doi.org/10.1002/num.20460   DOI
22 M. Dehghan, J. Manafian Heris, and A. Saadatmandi, Application of the Exp-function method for solving a partial differential equation arising in biology and population genetics, Internat. J. Numer. Methods Heat Fluid Flow 21 (2011), no. 6-7, 736-753. https://doi.org/10.1108/09615531111148482   DOI
23 H. Demiray, A complex travelling wave solution to the kdv-burgers equation, Phys. Lett. A 344 (2005), no. 6, 418-422.   DOI
24 E. Fan, Extended tanh-function method and its applications to nonlinear equations, Phys. Lett. A 277 (2000), no. 4-5, 212-218. https://doi.org/10.1016/S0375-9601(00)00725-8   DOI
25 H. Jia and W. Xu, Solitons solutions for some nonlinear evolution equations, Appl. Math. Comput. 217 (2010), no. 4, 1678-1687. https://doi.org/10.1016/j.amc.2009.09.061   DOI
26 E. Fan, Two new applications of the homogeneous balance method, Phys. Lett. A 265 (2000), no. 5-6, 353-357. https://doi.org/10.1016/S0375-9601(00)00010-4   DOI
27 E. Fan and Y. C. Hon, Applications of extended tanh method to \special" types of nonlinear equations, Appl. Math. Comput. 141 (2003), no. 2-3, 351-358. https://doi.org/10.1016/S0096-3003(02)00260-6   DOI
28 E. Fan, J. Zhang, and B. Y. C. Hon, A new complex line soliton for the two-dimensional KdV-Burgers equation, Phys. Lett. A 291 (2001), no. 6, 376-380. https://doi.org/10.1016/S0375-9601(01)00707-1   DOI
29 Z. Feng and Y. Huang, Approximate solution of the Burgers-Korteweg-de Vries equation, Commun. Pure Appl. Anal. 6 (2007), no. 2, 429-440. https://doi.org/10.3934/cpaa.2007.6.429   DOI
30 B. Ibis and M. Bayram, Approximate solutions some nonlinear evolutions equations by using the reduced differential transform method, Int. J. Appl. Math. Res. 3 (2012), no. 1, 288-302.
31 R. S. Johnson, A non-linear equation incorporating damping and dispersion, J. Fluid Mech. 42 (1970), 49-60. https://doi.org/10.1017/S0022112070001064   DOI
32 N. A. Kudryashov and D. I. Sinelshchikov, Extended models of non-linear waves in liquid with gas bubbles, Int. J. Non Linear Mech. 63 (2014), 31-38.   DOI
33 H. Leblond and D. Mihalache, Ultrashort light bullets described by the two-dimensional sine-gordon equation, Phys. Rev. A 81 (2010), no. 6, 063815.   DOI
34 W. Malfliet, Solitary wave solutions of nonlinear wave equations, Amer. J. Phys. 60 (1992), no. 7, 650-654. https://doi.org/10.1119/1.17120   DOI