DOI QR코드

DOI QR Code

KINK WAVE SOLUTIONS TO KDV-BURGERS EQUATION WITH FORCING TERM

  • Received : 2019.03.31
  • Accepted : 2019.12.17
  • Published : 2020.04.30

Abstract

In this paper, we used modified tanh-coth method, combined with Riccati equation and secant hyperbolic ansatz to construct abundantly many real and complex exact travelling wave solutions to KdV-Burgers (KdVB) equation with forcing term. The real part is the sum of the shock wave solution of a Burgers equation and the solitary wave solution of a KdV equation with forcing term, while the imaginary part is the product of a shock wave solution of Burgers with a solitary wave travelling solution of KdV equation. The method gives more solutions than the previous methods.

Keywords

References

  1. R. Abazari, Application of extended Tanh function method on KdV-Burgers equation with forcing term, Romanian J. Phys. 59 (2014), no. 1-2, 3-11.
  2. M. Abdou, A. Hendi, and H. K. Alanzi, New exact solutions of kdv equation in an elastic tube filled with a variable viscosity fluid, Stud. Nonlinear Sci. 3 (2012), no. 2, 62-68.
  3. M. A. Abdou and A. A. Soliman, Modified extended tanh-function method and its application on nonlinear physical equations, Phys. Lett. A 353 (2006), no. 6, 487-492. https://doi.org/10.1016/j.physleta.2006.01.013
  4. G. Adomian, Solving frontier problems of physics: the decomposition method, Fundam. Theor. Phys. 60, Kluwer Academic Publishers Group, Dordrecht, 1994. https://doi.org/10.1007/978-94-015-8289-6
  5. M. Ali Akbar, N. Hj. Mohd. Ali, and E. M. E. Zayed, Generalized and improved (G'/G)-expansion method combined with Jacobi elliptic equation, Commun. Theor. Phys. (Beijing) 61 (2014), no. 6, 669-676. https://doi.org/10.1088/0253-6102/61/6/02
  6. A. H. A. Ali and A. A. Soliman, New exact solutions of some nonlinear partial differential equations, Int. J. Nonlinear Sci. 5 (2008), no. 1, 79-88.
  7. A. Bekir, On traveling wave solutions to combined KdV-mKdV equation and modified Burgers-KdV equation, Commun. Nonlinear Sci. Numer. Simul. 14 (2009), no. 4, 1038-1042. https://doi.org/10.1016/j.cnsns.2008.03.014
  8. E. Bilyay, B. Ozbahceci, and A. Yalciner, Extreme waves at filyos, southern black sea, Nat. Hazards Earth Syst. Sci. 11 (2011), no. 3, 659-666. https://doi.org/10.5194/nhess-11-659-2011
  9. Y. B. Chukkol, M. N. Mohamad, and M. I. Muminov, Exact solutions to the KDV-Burgers equation with forcing term using Tanh-Coth method, AIP Conf. Proc. 1870 (2017), no. 1, 040024.
  10. M. Dehghan and J. Manafian, The solution of the variable coefficients fourth-order parabolic partial differential equations by the homotopy perturbation method, Z. Naturforsch. A 64 (2009), no. 7-8, 420-430. https://doi.org/10.1515/zna-2009-7-803
  11. M. Dehghan, J. Manafian, and A. Saadatmandi, Solving nonlinear fractional partial differential equations using the homotopy analysis method, Numer. Methods Partial Differential Equations 26 (2010), no. 2, 448-479. https://doi.org/10.1002/num.20460
  12. M. Dehghan, J. Manafian Heris, and A. Saadatmandi, Application of the Exp-function method for solving a partial differential equation arising in biology and population genetics, Internat. J. Numer. Methods Heat Fluid Flow 21 (2011), no. 6-7, 736-753. https://doi.org/10.1108/09615531111148482
  13. H. Demiray, A complex travelling wave solution to the kdv-burgers equation, Phys. Lett. A 344 (2005), no. 6, 418-422. https://doi.org/10.1016/j.physleta.2004.09.087
  14. E. Fan, Extended tanh-function method and its applications to nonlinear equations, Phys. Lett. A 277 (2000), no. 4-5, 212-218. https://doi.org/10.1016/S0375-9601(00)00725-8
  15. E. Fan, Two new applications of the homogeneous balance method, Phys. Lett. A 265 (2000), no. 5-6, 353-357. https://doi.org/10.1016/S0375-9601(00)00010-4
  16. E. Fan and Y. C. Hon, Applications of extended tanh method to \special" types of nonlinear equations, Appl. Math. Comput. 141 (2003), no. 2-3, 351-358. https://doi.org/10.1016/S0096-3003(02)00260-6
  17. E. Fan, J. Zhang, and B. Y. C. Hon, A new complex line soliton for the two-dimensional KdV-Burgers equation, Phys. Lett. A 291 (2001), no. 6, 376-380. https://doi.org/10.1016/S0375-9601(01)00707-1
  18. Z. Feng and Y. Huang, Approximate solution of the Burgers-Korteweg-de Vries equation, Commun. Pure Appl. Anal. 6 (2007), no. 2, 429-440. https://doi.org/10.3934/cpaa.2007.6.429
  19. B. Ibis and M. Bayram, Approximate solutions some nonlinear evolutions equations by using the reduced differential transform method, Int. J. Appl. Math. Res. 3 (2012), no. 1, 288-302.
  20. H. Jia and W. Xu, Solitons solutions for some nonlinear evolution equations, Appl. Math. Comput. 217 (2010), no. 4, 1678-1687. https://doi.org/10.1016/j.amc.2009.09.061
  21. R. S. Johnson, A non-linear equation incorporating damping and dispersion, J. Fluid Mech. 42 (1970), 49-60. https://doi.org/10.1017/S0022112070001064
  22. N. A. Kudryashov and D. I. Sinelshchikov, Extended models of non-linear waves in liquid with gas bubbles, Int. J. Non Linear Mech. 63 (2014), 31-38. https://doi.org/10.1016/j.ijnonlinmec.2014.03.011
  23. H. Leblond and D. Mihalache, Ultrashort light bullets described by the two-dimensional sine-gordon equation, Phys. Rev. A 81 (2010), no. 6, 063815. https://doi.org/10.1103/physreva.81.063815
  24. W. Malfliet, Solitary wave solutions of nonlinear wave equations, Amer. J. Phys. 60 (1992), no. 7, 650-654. https://doi.org/10.1119/1.17120
  25. Z. Odibat, A Riccati equation approach and travelling wave solutions for nonlinear evolution equations, Int. J. Appl. Comput. Math. 3 (2017), no. 1, 1-13. https://doi.org/10.1007/s40819-015-0085-z
  26. A. H. Salas S and C. A. Gomez S, Exact solutions for a third-order KdV equation with variable coefficients and forcing term, Math. Probl. Eng. 2009 (2009), Art. ID 737928, 13 pp. https://doi.org/10.1155/2009/737928
  27. A. M. Wazwaz, The extended tanh method for new solitons solutions for many forms of the fifth-order KdV equations, Appl. Math. Comput. 184 (2007), no. 2, 1002-1014. https://doi.org/10.1016/j.amc.2006.07.002
  28. A. M. Wazwaz, Partial differential equations and solitary waves theory, Nonlinear Physical Science, Higher Education Press, Beijing, 2009. https://doi.org/10.1007/978-3-642-00251-9
  29. A. M. Wazwaz, Partial differential equations and solitary waves theory, Nonlinear Physical Science, Higher Education Press, Beijing, 2009. https://doi.org/10.1007/978-3-642-00251-9
  30. L. Wazzan, A modified tanh-coth method for solving the KdV and the KdV-Burgers' equations, Commun. Nonlinear Sci. Numer. Simul. 14 (2009), no. 2, 443-450. https://doi.org/10.1016/j.cnsns.2007.06.011
  31. L. V. Wijngaarden, On the equations of motion for mixtures of liquid and gas bubbles, J. Fluid Mech. 33 (1968), no. 3, 465-474. https://doi.org/10.1017/S002211206800145X
  32. N. Zahibo, E. Pelinovsky, and A. Sergeeva, Weakly damped KdV soliton dynamics with the random force, Chaos Solitons Fractals 39 (2009), no. 4, 1645-1650. https://doi.org/10.1016/j.chaos.2007.06.032
  33. S. Zhang, Exp-function method exactly solving the KdV equation with forcing term, Appl. Math. Comput. 197 (2008), no. 1, 128-134. https://doi.org/10.1016/j.amc.2007.07.041
  34. S. Zhang and J. Li, Soliton solutions and dynamical evolutions of a generalized akns system in the framework of inverse scattering transform, Optik 137 (2017), 228-237. https://doi.org/10.1016/j.ijleo.2017.02.104