• Title/Summary/Keyword: Kauffman polynomial

Search Result 10, Processing Time 0.018 seconds

The First Four Terms of Kauffman's Link Polynomial

  • Kanenobu, Taizo
    • Kyungpook Mathematical Journal
    • /
    • v.46 no.4
    • /
    • pp.509-525
    • /
    • 2006
  • We give formulas for the first four coefficient polynomials of the Kauffman's link polynomial involving linking numbers and the coefficient polynomials of the Kauffman polynomials of the one- and two-component sublinks. We use mainly the Dubrovnik polynomial, a version of the Kauffman polynomial.

  • PDF

On a Background of the Existence of Multi-variable Link Invariants

  • Nagasato, Fumikazu;Hamai, Kanau
    • Kyungpook Mathematical Journal
    • /
    • v.48 no.2
    • /
    • pp.233-240
    • /
    • 2008
  • We present a quantum theorical background of the existence of multi-variable link invariants, for example the Kauffman polynomial, by observing the quantum (sl(2,$\mathbb{C}$), ad)-invariant from the Kontsevich invariant point of view. The background implies that the Kauffman polynomial can be studied by using the sl(N,$\mathbb{C}$)-skein theory similar to the Jones polynomial and the HOMFLY polynomial.

Delta Moves and Arrow Polynomials of Virtual Knots

  • Jeong, Myeong-Ju;Park, Chan-Young
    • Kyungpook Mathematical Journal
    • /
    • v.58 no.1
    • /
    • pp.183-202
    • /
    • 2018
  • ${\Delta}-moves$ are closely related with a Vassiliev invariant of degree 2. For classical knots, M. Okada showed that the second coefficients of the Conway polynomials of two knots differ by 1 if the two knots are related by a single ${\Delta}-move$. The first author extended the Okada's result for virtual knots by using a Vassiliev invariant of virtual knots of type 2 which is induced from the Kauffman polynomial of a virtual knot. The arrow polynomial is a generalization of the Kauffman polynomial. We will generalize this result by using Vassiliev invariants of type 2 induced from the arrow polynomial of a virtual knot and give a lower bound for the number of ${\Delta}-moves$ transforming $K_1$ to $K_2$ if two virtual knots $K_1$ and $K_2$ are related by a finite sequence of ${\Delta}-moves$.

KNOTOIDS, PSEUDO KNOTOIDS, BRAIDOIDS AND PSEUDO BRAIDOIDS ON THE TORUS

  • Diamantis, Ioannis
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.4
    • /
    • pp.1221-1248
    • /
    • 2022
  • In this paper we study the theory of knotoids and braidoids and the theory of pseudo knotoids and pseudo braidoids on the torus T. In particular, we introduce the notion of mixed knotoids in S2, that generalizes the notion of mixed links in S3, and we present an isotopy theorem for mixed knotoids. We then generalize the Kauffman bracket polynomial, <; >, for mixed knotoids and we present a state sum formula for <; >. We also introduce the notion of mixed pseudo knotoids, that is, multi-knotoids on two components with some missing crossing information. More precisely, we present an isotopy theorem for mixed pseudo knotoids and we extend the Kauffman bracket polynomial for pseudo mixed knotoids. Finally, we introduce the theories of mixed braidoids and mixed pseudo braidoids as counterpart theories of mixed knotoids and mixed pseudo knotoids, respectively. With the use of the L-moves, that we also introduce here for mixed braidoid equivalence, we formulate and prove the analogue of the Alexander and the Markov theorems for mixed knotoids. We also formulate and prove the analogue of the Alexander theorem for mixed pseudo knotoids.

ON THE CHARACTER RINGS OF TWIST KNOTS

  • Nagasato, Fumikazu
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.3
    • /
    • pp.469-474
    • /
    • 2011
  • The Kauffman bracket skein module $K_t$(M) of a 3-manifold M becomes an algebra for t = -1. We prove that this algebra has no non-trivial nilpotent elements for M being the exterior of the twist knot in 3-sphere and, therefore, it is isomorphic to the $SL_2(\mathbb{C})$-character ring of the fundamental group of M. Our proof is based on some properties of Chebyshev polynomials.

KAUFFMAN POLYNOMIAL OF PERIODIC KNOTTED TRIVALENT GRAPHS

  • Aboufattoum, Ayman;Elsakhawy, Elsyed A.;Istvan, Kyle;Qazaqzeh, Khaled
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.3
    • /
    • pp.799-808
    • /
    • 2018
  • We generalize some of the congruences in [20] to periodic knotted trivalent graphs. As an application, a criterion derived from one of these congruences is used to obstruct periodicity of links of few crossings for the odd primes p = 3, 5, 7, and 11. Moreover, we derive a new criterion of periodic links. In particular, we give a sufficient condition for the period to divide the crossing number. This gives some progress toward solving the well-known conjecture that the period divides the crossing number in the case of alternating links.

2n-Moves and the Γ-Polynomial for Knots

  • Hideo Takioka
    • Kyungpook Mathematical Journal
    • /
    • v.64 no.3
    • /
    • pp.511-518
    • /
    • 2024
  • A 2n-move is a local change for knots and links which changes 2n-half twists to 0-half twists or vice versa for a natural number n. In 1979, Yasutaka Nakanishi conjectured that the 4-move is an unknotting operation. This is still an open problem. It is known that the Γ-polynomial is an invariant for oriented links which is the common zeroth coefficient polynomial of the HOMFLYPT and Kauffman polynomials. In this paper, we show that the 4k-move is not an unknotting operation for any integer k(≥ 2) by using the Γ-polynomial, and if Γ(K; -1) ≡ 9 (mod 16) then the knot K cannot be deformed into the unknot by a single 4-move. Moreover, we give a one-to-one correspondence between the value Γ(K; -1) (mod 16) and the pair (a2(K), a4(K)) (mod 2) of the second and fourth coefficients of the Alexander-Conway polynomial for a knot K.

Finite Type Invariants and the Kauffman Bracket Polynomials of Virtual Knots

  • Jeong, Myeong-Ju;Park, Chan-Young;Yeo, Soon Tae
    • Kyungpook Mathematical Journal
    • /
    • v.54 no.4
    • /
    • pp.639-653
    • /
    • 2014
  • In [9], Kauffman introduced virtual knot theory and generalized many classical knot invariants to virtual ones. For example, he extended the Jones polynomials $V_K(t)$ of classical links to the f-polynomials $f_K(A)$ of virtual links by using bracket polynomials. In [4], M. Goussarov, M. Polyak and O. Viro introduced finite type invariants of virtual knots. In this paper, we give a necessary condition for a virtual knot invariant to be of finite type by using $t(a_1,{\cdots},a_m)$-sequences of virtual knots. Then we show that the higher derivatives $f_K^{(n)}(a)$ of the f-polynomial $f_K(A)$ of a virtual knot K at any point a are not of finite type unless $n{\leq}1$ and a = 1.