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VIRTUAL LINKS WITH NORMAL DIAGRAMS

Young Ho Im

Abstract. We show that if two virtual link diagrams which are normal
are equivalent under generalized Reidemeister moves, then they are equiv-

alent under generalized Reidemeister moves preserving the normality of
diagrams.

1. Introduction

L. H. Kauffman [8] introduced virtual knot theory as a generalization of
classical knot theory. A virtual link diagram is a link diagram in R2 possibly
with some encircled crossings without over/under informaton, called virtual
crossings. A virtual link is the equivalence class of such a link diagram by
generalized Reidemeister moves in Figure 1.

Figure 1. generalized Reidemeister Moves

It is known [1, 8] that if two classical knot diagrams are equivalent under
generalized Reidemeister moves, then they are equivalent under the classical
Reidemeister moves. In this sense classical knot theory is properly embedded
in virtual knot theory and any invariant of virtual links is a generalization of
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a classical invariant. In [6], Kauffman showed that the group of an oriented
classical link, the bracket polynomial and hence the Jones polynomial are gen-
eralized naturally in virtual links.

On the other hand, N. Kamada[2] introduced the notion of a normal or
checkerboard colorable virtual link diagram. It is well known[2] that every
calssical link diagram and alternating virtual link diagram are normal. But
not every virtual link diagram is normal. It has been shown that many results
on classical knots and links can be extended to checkerboard colorable virtual
links[2, 4, 5].

The purpose of this paper is to show that if two virtual link diagrams which
are normal are equivalent under generalized virtual Reidemeister moves, then
they are equivalent under generalized Reidemeister moves preserving the nor-
mality.

2. Normal diagrams of virtual links

In this section, we show that if two virtual link diagrams which are normal
are equivalent under generalized virtual Reidemeister moves, then they are
equivalent under generalized Reidemeister moves preserving the normality. For
example, any classical link diagram is always normal but the virtual trefoil knot
diagram Dv in Figure 2 is not normal.

Figure 2

We start basic definitions and results which are needed throughout this
paper.

A state of a virtual link diagram D is a union of immersed loops in R2 with
only virtual crossings, which is obtained by splicing all classical crossings of
D. At each spliced crossing we attach a chord labeled A or B to represent the
splicing direction as shown in Figure 3.

A state σ of a virtual link diagram D is normal if for any classical crossing x
of D, the loops of σ spliced at x are of type (1) or (2) in Figure 4. A virtual link
diagram D is normal if every state of D is normal. A virtual link K is normal
if K is the equivalence class of a normal diagram under equivalence relation
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Figure 3

Figure 4

generated by generalized Reidemeister moves. This concept is eventually the
same as checkerboard colorable virtual link introduced in [2].

For a virtual link diagramD, we denote by D̄ the union of immersed circles in
R2 obtained by ignoring the over- and under-information at classical crossings
of D and leaving the virtual information unchanged so that the edges of D̄ are
oriented alternately at each vertex, which corresponds to a real crossing of D.

Definition. [5] D̄ admits an alternate orientation if all edges (when regarding
D̄ as a 4-valent planar graph) can be oriented as shown in Figure 5.

Figure 5

Proposition 2.1. [5] A virtual link diagram D is normal if and only if D̄
admits an alternate orientation.

Proposition 2.2. [5] Let D = D1 ∪ · · · ∪ Dµ be a virtual link diagram of
a µ-component virtual link. If D is normal, then the number of all classical
crossings between Di and D \Di is even.

Remark 2.3. We assign an orientation alternately for vertices of D̄ corre-
sponding to real crossings of D and assign an orientation for virtual crossings
as shown in (2) of Figure 5. If D̄ does not admit an alternate orientation,
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either the edges of D̄ at some vertex p̄ can be oriented as in Figure 6 or we
cannot assign a suitable orientation as shown in the right of Figure 7 because
of Proposition 2.2. For example, there are the virtual Hopf link and the virtual
trefoil knot diagram which do not admit an alternate orientation, see Figure 7.

Figure 6

Figure 7

A local move for a diagram such as a Reidemeister move is applied in a local
disk. We call such a disk a stage for the move. To show the main result of this
section, we begin with the following lemmas which illustrate the behavior of
generalized Reidemeister moves.

Lemma 2.4. Let D be a normal diagram and D′ be a virtual link diagram.
Suppose D′ is obtained from D by applying a single generalized Reidemeister
move Ω, where Ω is not R2-move. Then D′ is a normal diagram.

Proof. Let B be a stage for a given generalized Reidemeister move Ω. Since D
is a normal diagram, D̄ admits an alternate orientation. In the complement of
B, D̄ and D̄′ admit the same alternate orientation. It is easy to check that D′

is a normal diagram as shown in Figure 8. �

Lemma 2.5. Let D be a normal diagram and D′ be a virtual link diagram.
Suppose D′ is obtained from D by applying a single R2-move.

(1) If the stage B is Figure 9, then D′ is a normal diagram.
(2) If the stage B is Figure 10, then D′ is not a normal diagram.

Proof. (1) Since D is a normal diagram, D̄ admits an alternate orientation.
In the complement of B, there is an alternate orientation of D̄′. According to
Figure 9, D̄′ admits an alternate orientation.

(2) As shown in Figure 10, D̄′ does not admit an alternate orientation. �
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Figure 8

Figure 9

Lemma 2.6. Let D be a normal diagram and D′ be a virtual link diagram
which is not normal. Suppose D′ is obtained from D by applying a R2-move
Ω. Then there is a normal diagram D′′, which is equivalent to D′, obtained
from D by replacing Ω with a VR2-move Γ.

Proof. Let B be a stage for a R2-move Ω. Since D is a normal diagram, D̄
admits an alternate orientation. Being D′ a virtual link diagram which is not
normal, we assume that the two arcs of D̄ with an alternate orientation in B
have parallel orientations as in Figure 10. Since D and D′ are the same in the
complement of B, D̄′ does not admit an alternate orientation as in Figure 10.
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Figure 10

Applying a VR2-move Γ instead of R2-move Ω, we get a normal diagram D′′

by Lemma 2.4, which is equivalent to D′. �

Lemma 2.7. Let D1 and D2 be virtual link diagrams which are equivalent to a
virtual normal link L. Suppose D2 is obtained from D1 by applying a R3-move
Ω in a stage B and D̄1 does not admit an alternate orientation, so that the
orientation in a stage B is like as shown in Figure 6. Then there are virtual
link diagrams D′i(i = 1, 2) so that D′2 is obtained from D′1 by applying a VR4-
move Γ, instead of R3-move Ω, where D′1 is a virtual link diagram obtained
from D1 by replacing two real crossings in a stage B with two virtual crossings.

Proof. Let pi be real crossings of D1 in B and p̄i the corresponding vertices
of D̄1 for i = 1, 2, 3. Since D̄1 does not admit an alternate orientation, the
edges of D̄1 at some vertex p̄i in a stage B can be oriented as in Figure 6.
By traveling along the components of D̄1, we can assume that any alternate
orientation fails at two points p̄1 and p̄2. Replacing real crossings p1 and p2 of
D1 by virtual crossings, we obtain a virtual link diagram D′1. Now, by applying
VR4-move Γ, we have a virtual diagram D′2. �

Lemma 2.8. Let D1 and D2 be virtual link diagrams which are equivalent to
a virtual normal link K. Suppose D2 is obtained from D1 by applying a VR4-
move Ω in a stage B and D1 does not admit an alternate orientation, so that
the orientation in a stage B is like as shown in Figure 6. Then there are virtual
link diagrams D′i(i = 1, 2) so that D′2 is obtained from D′1 by applying a VR3-
move Γ, instead of VR4-move Ω, where D′1 is a virtual link diagram obtained
from D1 by replacing a real crossing in a stage B with a virtual crossing.

Proof. Let p be a real crossing of D1 in B and p̄ the corresponding vertex of
D̄1. Since D̄1 does not admit an alternate orientation, the edges of D̄1 at the
vertex p̄ in a stage B can be oriented as in Figure 6. By traveling along the
components of D̄1, we can assume that any alternate orientation fails at p̄.
Replacing the real crossing p of D1 by a virtual crossing, we obtain a virtual
link diagram D′1. Now, by applying VR3-move Γ, we have a virtual diagram
D′2. �

The following is the main theorem of this section.

Theorem 2.9. If D and D′ are normal diagrams of virtual links such that
D and D′ are equivalent under generalized virtual Reidemeister moves, then
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D and D′ are equivalent under generalized Reidemeister moves preserving the
normality.

Proof. Since D and D′ are normal diagrams of virtual links such that D and D′

are equivalent under generalized virtual Reidemeister moves, there is a finite
sequence of generalized Reidemeister moves {Ωi}i=1,··· ,n and a sequence of
virtual link diagrams {Di}i=0,1,··· ,n such that

D = D0
Ω1−−−−→ D1

Ω2−−−−→ D2 →, · · · ,→ Dn−1
Ωn−−−−→ Dn = D′.

Since D0 is a normal diagram, we can assume that D1 is not a normal
diagram. By Lemma 2.4 and 2.5, D1 is obtained from D0 by applying a single
R2-move Ω1 in a stage B1 as D0 and D1 are in Figure 10. According to Lemma
2.5, we obtain a normal diagram D′1 by replacing Ω1 with a VR2-move Γ1.

For the following step, we consider two cases. First, we assume that the
stage B2 for Ω2 does not contain any crossing in B1 for Ω1. If Ω2 is not a
R2-move as in Figure 10, then we choose Γ2 = Ω2. If Ω2 is a R2-move as in
Figure 10, we choose a VR2-move Γ2 so that we have a normal diagram D′2.

Next, we assume that the stage B2 for Ω2 contains at least one crossing in
B1 for Ω1, which is replaced by a virtual crossing via Γ1. According to lemma
2.7 or 2.8, we obtain a normal diagram D′2 by replacing Ω2 with Γ2 preserving
the normality.

By proceeding step by step, we construct a finite sequence of normal dia-
grams {D′i}i=0,1,··· ,n and a finite sequence of generalized Reidemeister moves
{Γi}i=1,··· ,n preserving the normality such that

D = D0
Γ1−−−−→ D′1

Γ2−−−−→ D′2 →, · · · ,→ D′n−1
Γn−−−−→ Dn = D′.

�

Remark 2.10. If D is a classical link diagram, the stage B1 in Figure 10
cannot be happened but it is possible for the case of virtual link diagrams.
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