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Abstract. A 2n-move is a local change for knots and links which changes 2n-half twists to

0-half twists or vice versa for a natural number n. In 1979, Yasutaka Nakanishi conjectured

that the 4-move is an unknotting operation. This is still an open problem. It is known that

the Γ-polynomial is an invariant for oriented links which is the common zeroth coefficient

polynomial of the HOMFLYPT and Kauffman polynomials. In this paper, we show that the

4k-move is not an unknotting operation for any integer k(≥ 2) by using the Γ-polynomial,

and if Γ(K;−1) ≡ 9 (mod 16) then the knot K cannot be deformed into the unknot by a

single 4-move. Moreover, we give a one-to-one correspondence between the value Γ(K;−1)

(mod 16) and the pair (a2(K), a4(K)) (mod 2) of the second and fourth coefficients of the

Alexander-Conway polynomial for a knot K.

1. Introduction

As mentioned in the papers [1, 8, 12, 13, 15], a local change for oriented knots K
and K ′ in the left-hand side of Fig. 1 is called a t2n-move and that in the right-hand
side of Fig. 1 is called a t2n-move, both of which change 2n-half twists to 0-half twists
or vice versa for a natural number n, where dotted arcs in Fig. 1 can be knotted and
linked. Moreover, the unoriented version of t2n, t2n-moves is called a 2n-move. In
1979, Yasutaka Nakanishi conjectured that the 4-move is an unknotting operation.
This is still an open problem. It is known that the Γ-polynomial is an invariant for
oriented links which is the common zeroth coefficient polynomial of the HOMFLYPT
and Kauffman polynomials. (See Sect. 2.) In this paper, we study 2n-moves and
the Γ-polynomial for knots. By applying the skein relation (1), we have the following
theorem.
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Figure 1. t2n, t2n-moves.

Theorem 1.1. Let n be a natural number. Let K, K ′, K1, K2 be oriented knots as
shown in Fig. 1. Let ℓ be the linking number of K1 and K2. Then we have

Γ(K) =

{
x−nΓ(K ′)− nx−(ℓ+n)(1− x)Γ(K1)Γ(K2) (t2n-move),

xnΓ(K ′) + (1− xn)x−ℓΓ(K1)Γ(K2) (t2n-move).

From this, we have the following corollary.

Corollary 1.2.{
Γ(K) = x−nΓ(K ′) in Zn[x

±1] (t2n-move),

Γ(K; q) = Γ(K ′; q) for any n-th root of unity q (t2n-move).

It is known that the Γ-polynomial is characterized as follows.

Lemma 1.3. ([5]) Let K be the set of oriented knots. The image of K under Γ is
the following:

Γ(K) =
{
1 + (1− x)2f(x) | f(x) ∈ Z[x±1]

}
.

Lemma 1.4. ([3]) Let K′ be the set of 2-bridge knots with unknotting number one.
Then we have

Γ(K′) = Γ(K).

In particular, for any K ∈ K, there exists an integer i such that Γ(K;−1) = 1 + 4i,
and for any integer j, there exists K ∈ K′ such that Γ(K;−1) = 1+4j. Since 2-bridge
knots can be deformed into the unknot by 4-moves, we cannot show the 4-move is
not an unknotting operation by using the Γ-polynomial. Immediately, we have the
following corollary.
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Corollary 1.5.

Γ(K;−1)

≡


−Γ(K ′;−1) + (4k − 2)(−1)ℓ (mod 16k − 8) (t4k−2-move, k ∈ N),
Γ(K ′;−1)− 4k(−1)ℓ (mod 16k) (t4k-move, k ∈ N),
−Γ(K ′;−1) + 2(−1)ℓ (mod 8) (t4k−2-move, k ∈ N),
Γ(K ′;−1) (t4k-move, k ∈ N).

Therefore, by applying Lemma 1.3, we see that the 4k-move is not an unknotting
operation for any integer k(≥ 2), and if Γ(K;−1) ≡ 9 (mod 16) then the knot K
cannot be deformed into the unknot by a single 4-move. By Lemma 1.3, we have
Γ(K;−1) ≡ 1, 5, 9, 13 (mod 16) for any knot K. Here, we show a one-to-one corre-
spondence between the value Γ(K;−1) (mod 16) and the pair (a2(K), a4(K)) of the
second and fourth coefficients modulo 2 of the Alexander-Conway polynomial for a
knot K as follows.

Theorem 1.6. Let (a2(K), a4(K)) be the pair of the second and fourth coefficients
of the Alexander-Conway polynomial for a knot K. Then we have the following
correspondence:

(a2(K), a4(K)) ≡ (0, 0) (mod 2) ⇐⇒ Γ(K;−1) ≡ 1 (mod 16),

(a2(K), a4(K)) ≡ (0, 1) (mod 2) ⇐⇒ Γ(K;−1) ≡ 9 (mod 16),

(a2(K), a4(K)) ≡ (1, 0) (mod 2) ⇐⇒ Γ(K;−1) ≡ 13 (mod 16),

(a2(K), a4(K)) ≡ (1, 1) (mod 2) ⇐⇒ Γ(K;−1) ≡ 5 (mod 16).

Remark 1.7. The value Γ(K;−1) (mod 16) is also considered in [16] to study clasp
disks with two clasp singularities.

2. The Γ-Polynomial for Oriented Links

The HOMFLYPT polynomial P (L; y, z) ∈ Z[y±1, z±1] and the Kauffman polyno-
mial F (L; a, b) ∈ Z[a±1, b±1] of an oriented link L are computed by the following
recursive formulas [2, 4, 14]:
For the unknot U , we have

P (U) = F (U) = 1.

For a triple (L+, L−, L0) of oriented links which are identical except near one point
as shown in Fig. 2, we have

yP (L+) + y−1P (L−) = zP (L0).

Therefore, we have

P (L;
√
−1,

√
−1z) = ∇(L; z),

where ∇(L; z) is the Alexander-Conway polynomial.
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-

Figure 2. Skein triple.

For a quadruple (D+, D−, D0, D∞) of oriented link diagrams which are identical
except near one point as shown in Fig. 3, we have

aF (D+) + a−1F (D−) = b(F (D0) + a−2νF (D∞)),

where 2ν = w(D+) − w(D∞) − 1 and w(D+), w(D∞) are the writhes of D+, D∞,
respectively. In particular, we call (L+, L−, L0), (D+, D−, D0, D∞) a skein triple, a
skein quadruple, respectively. The HOMFLYPT and Kauffman polynomials of an

Figure 3. Skein quadruple.

oriented r-component link L are presented by the following:

P (L; y, z) = (yz)−r+1
∑
n≥0

pn(L; y)z
2n,

F (L; a, b) = (ab)−r+1
∑
n≥0

fn(L; a)b
n,

where pn(L; y) ∈ Z[y±1] and fn(L; a) ∈ Z[a±1]. In particular, pn(L; y) is a Laurent
polynomial in the variable −y2 for n(≥ 0). Therefore, putting −y2 = x, we denote
pn(L; y) by cn(L;x) ∈ Z[x±1], that is, cn(L;−y2) = pn(L; y). We call cn(L;x) and
fn(L; a) the n-th coefficient HOMFLYPT and Kauffman polynomials of an oriented
link L, respectively. As mentioned in the paper [10], we have

p0(L; y) = f0(L; y).

In particular, we call the zeroth coefficient HOMFLYPT polynomial c0(L;x) of an
oriented link L the Γ-polynomial of L and denote it by Γ(L;x) ∈ Z[x±1]. It is known
that the following holds [5, 6, 7].

Proposition 2.1. (i) For the unknot U , we have

Γ(U) = 1.
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For a skein triple (L+, L−, L0), we have

−xΓ(L+) + Γ(L−) =

{
Γ(L0) if δ = 0,

0 if δ = 1,

where δ = (r+ − r0 + 1)/2 (= 0, 1) for the numbers r+, r0 of components of L+, L0,
respectively.
(ii) Let L ⊔ L′ and L#L′ be the split union and a connected sum of oriented links L
and L′, respectively. Then we have

Γ(L ⊔ L′) = (1− x)Γ(L#L′).

(iii) Let L#L′ be a connected sum of oriented links L and L′. Then we have

Γ(L#L′) = Γ(L)Γ(L′).

(iv) Let L be an oriented r-component link with the components K1, . . . ,Kr and lk(L)
the total linking number of L. Then we have

Γ(L) = (1− x)r−1x− lk(L)Γ(K1) · · ·Γ(Kr).

(v) For a skein triple (K+,K−,K1 ∪K2) with oriented knots K+, K−, K1, K2, we
have

(1) −xΓ(K+) + Γ(K−) = (1− x)x− lk(K1∪K2)Γ(K1)Γ(K2).

(vi) Let K be an oriented knot. Then we have

Γ(K; 1) = 1.

(vii) Let −L be the inverse of an oriented link L, that is, the link obtained by reversing
the orientation of each component of L. Then we have

Γ(−L) = Γ(L).

(viii) Let L∗ be the mirror image of an oriented r-component link L. Then we have

Γ(L∗;x) = (−x)r−1Γ(L;x−1).

3. Proof of Theorem 1.1

First, we consider the case of the t2n-move for a natural number n. By applying
the skein relation (1) to the parallel 2n-half twists in the left-hand side of Fig. 1 as
follows:

Γ(K)

= x−nΓ(K ′)− x−1(1− x)x−(ℓ+n−1)Γ(K1)Γ(K2)− · · · − x−n(1− x)x−ℓΓ(K1)Γ(K2)

= x−nΓ(K ′)− nx−(ℓ+n)(1− x)Γ(K1)Γ(K2).
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Therefore, by applying Lemma 1.3, we have

Γ(K;−1)

= (−1)nΓ(K ′;−1)− 2n(−1)ℓ+nΓ(K1;−1)Γ(K2;−1)

=

{
−Γ(K ′;−1) + 2n(−1)ℓΓ(K1;−1)Γ(K2;−1) if n is odd,

Γ(K ′;−1)− 2n(−1)ℓΓ(K1;−1)Γ(K2;−1) if n is even

=

{
−Γ(K ′;−1) + (4k − 2)(−1)ℓΓ(K1;−1)Γ(K2;−1) if n = 2k − 1 (k ∈ N),
Γ(K ′;−1)− 4k(−1)ℓΓ(K1;−1)Γ(K2;−1) if n = 2k (k ∈ N)

=

{
−Γ(K ′;−1) + (4k − 2)(−1)ℓ(1 + 4i+ 4j + 16ij) if n = 2k − 1 (k ∈ N),
Γ(K ′;−1)− 4k(−1)ℓ(1 + 4i+ 4j + 16ij) if n = 2k (k ∈ N)

≡

{
−Γ(K ′;−1) + (4k − 2)(−1)ℓ (mod 16k − 8) if n = 2k − 1 (k ∈ N),
Γ(K ′;−1)− 4k(−1)ℓ (mod 16k) if n = 2k (k ∈ N).

Next, we consider the case of the t2n-move for a natural number n. By applying the
skein relation (1) to the antiparallel 2n-half twists in the right-hand side of Fig. 1 as
follows:

Γ(K)

= xnΓ(K ′) + (1− x)x−ℓΓ(K1)Γ(K2) + · · ·+ xn−1(1− x)x−ℓΓ(K1)Γ(K2)

= xnΓ(K ′) + (1 + · · ·+ xn−1)(1− x)x−ℓΓ(K1)Γ(K2)

= xnΓ(K ′) + ((1− xn)/(1− x))(1− x)x−ℓΓ(K1)Γ(K2)

= xnΓ(K ′) + (1− xn)x−ℓΓ(K1)Γ(K2).

Therefore, by applying Lemma 1.3, we have

Γ(K;−1)

= (−1)nΓ(K ′;−1) + (1− (−1)n)(−1)ℓΓ(K1;−1)Γ(K2;−1)

=

{
−Γ(K ′;−1) + 2(−1)ℓΓ(K1;−1)Γ(K2;−1) if n is odd,

Γ(K ′;−1) if n is even

=

{
−Γ(K ′;−1) + 2(−1)ℓ(1 + 4i+ 4j + 16ij) if n is odd,

Γ(K ′;−1) if n is even

≡

{
−Γ(K ′;−1) + 2(−1)ℓ (mod 8) if n is odd,

Γ(K ′;−1) if n is even.

This completes the proofs of Theorem 1.1 and Corollary 1.5.

4. Proof of Theorem 1.6

It is known that the following lemmas hold.
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Lemma 4.1. ([11]) Let a2(K) be the second coefficient of the Alexander-Conway
polynomial of a knot K.

(2)
∑
n≥0

2ncn(K;−1) = (−1)a2(K).

Lemma 4.2. ([9])

(3)
∑
n≥0

4ncn(K;−1) = 1.

By (2)× 2 + (3), we have the following lemma.

Lemma 4.3.

3Γ(K;−1) + 8c1(K;−1) + 8c2(K;−1) ≡ 2(−1)a2(K) + 1 (mod 16).

We can see the following lemma easily.

Lemma 4.4. Let a2n(K) be the 2n-th coefficient of the Alexander-Conway polynomial
of a knot K for n ≥ 0.

cn(K;−1) ≡ cn(K; 1) ≡ a2n(K) (mod 2).

Here, we denote a2(K), a4(K), Γ(K;−1) by a2, a4, Γ, respectively. We prove Theo-
rem 1.6 as follows:

(1) We start with (a2, a4) ≡ (0, 0) (mod 2). By Lemmas 4.3, 4.4, Γ ≡ 1 (mod 16).
Conversely, we start with Γ ≡ 1 (mod 16). Assume a2 ≡ 1 (mod 2). By
Lemmas 4.3, 4.4, 8c2(K;−1) ≡ 4 (mod 16). This contradicts. Therefore,
a2 ≡ 0 (mod 2). By Lemmas 4.3, 4.4, a4 ≡ 0 (mod 2).

(2) We start with (a2, a4) ≡ (0, 1) (mod 2). By Lemmas 4.3, 4.4, Γ ≡ 9 (mod 16).
Conversely, we start with Γ ≡ 9 (mod 16). Assume a2 ≡ 1 (mod 2). By
Lemmas 4.3, 4.4, 8c2(K;−1) ≡ −4 (mod 16). This contradicts. Therefore,
a2 ≡ 0 (mod 2). By Lemmas 4.3, 4.4, a4 ≡ 1 (mod 2).

(3) We start with (a2, a4) ≡ (1, 0) (mod 2). By Lemmas 4.3, 4.4, Γ ≡ 13
(mod 16). Conversely, we start with Γ ≡ 13 (mod 16). Assume a2 ≡ 0
(mod 2). By Lemmas 4.3, 4.4, 8c2(K;−1) ≡ −4 (mod 16). This contradicts.
Therefore, a2 ≡ 1 (mod 2). By Lemmas 4.3, 4.4, a4 ≡ 0 (mod 2).

(4) We start with (a2, a4) ≡ (1, 1) (mod 2). By Lemmas 4.3, 4.4, Γ ≡ 5 (mod 16).
Conversely, we start with Γ ≡ 5 (mod 16). Assume a2 ≡ 0 (mod 2). By
Lemmas 4.3, 4.4, 8c2(K;−1) ≡ 4 (mod 16). This contradicts. Therefore,
a2 ≡ 1 (mod 2). By Lemmas 4.3, 4.4, a4 ≡ 1 (mod 2).
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This completes the proof of Theorem 1.6.
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