KYUNGPOOK Math. J. 64(2024), 511-518 https://doi.org/10.5666/KMJ.2024.64.3.511 pISSN 1225-6951 eISSN 0454-8124 © Kyungpook Mathematical Journal

2n-Moves and the Γ -Polynomial for Knots

HIDEO TAKIOKA School of Mechanical Engineering, College of Science and Engineering, Kanazawa University, Kakuma-Machi, Kanazawa, 920-1192, Japan e-mail: takioka@se.kanazawa-u.ac.jp

ABSTRACT. A 2*n*-move is a local change for knots and links which changes 2*n*-half twists to 0-half twists or vice versa for a natural number *n*. In 1979, Yasutaka Nakanishi conjectured that the 4-move is an unknotting operation. This is still an open problem. It is known that the Γ -polynomial is an invariant for oriented links which is the common zeroth coefficient polynomial of the HOMFLYPT and Kauffman polynomials. In this paper, we show that the 4k-move is not an unknotting operation for any integer $k \geq 2$ by using the Γ -polynomial, and if $\Gamma(K; -1) \equiv 9 \pmod{16}$ then the knot K cannot be deformed into the unknot by a single 4-move. Moreover, we give a one-to-one correspondence between the value $\Gamma(K; -1)$ (mod 16) and the pair $(a_2(K), a_4(K)) \pmod{2}$ of the second and fourth coefficients of the Alexander-Conway polynomial for a knot K.

1. Introduction

As mentioned in the papers [1, 8, 12, 13, 15], a local change for oriented knots Kand K' in the left-hand side of Fig. 1 is called a t_{2n} -move and that in the right-hand side of Fig. 1 is called a \bar{t}_{2n} -move, both of which change 2n-half twists to 0-half twists or vice versa for a natural number n, where dotted arcs in Fig. 1 can be knotted and linked. Moreover, the unoriented version of t_{2n} , \bar{t}_{2n} -moves is called a 2n-move. In 1979, Yasutaka Nakanishi conjectured that the 4-move is an unknotting operation. This is still an open problem. It is known that the Γ -polynomial is an invariant for oriented links which is the common zeroth coefficient polynomial of the HOMFLYPT and Kauffman polynomials. (See Sect. 2.) In this paper, we study 2n-moves and the Γ -polynomial for knots. By applying the skein relation (1), we have the following theorem.

Received August 22, 2020; revised July 6, 2021; accepted July 12, 2021.

²⁰²⁰ Mathematics Subject Classification: 57K10, 57K14.

Key words and phrases: 2n-move, Alexander-Conway polynomial, Γ -polynomial. This work was supported by JSPS KAKENHI Grant Number JP22K13911.

FIGURE 1. t_{2n} , \overline{t}_{2n} -moves.

Theorem 1.1. Let n be a natural number. Let K, K', K_1 , K_2 be oriented knots as shown in Fig. 1. Let ℓ be the linking number of K_1 and K_2 . Then we have

$$\Gamma(K) = \begin{cases} x^{-n} \Gamma(K') - n x^{-(\ell+n)} (1-x) \Gamma(K_1) \Gamma(K_2) & (t_{2n} \text{-move}), \\ x^n \Gamma(K') + (1-x^n) x^{-\ell} \Gamma(K_1) \Gamma(K_2) & (\overline{t}_{2n} \text{-move}). \end{cases}$$

From this, we have the following corollary.

Corollary 1.2.

$$\begin{cases} \Gamma(K) = x^{-n} \Gamma(K') \text{ in } \mathbb{Z}_n[x^{\pm 1}] & (t_{2n}\text{-move}), \\ \Gamma(K;q) = \Gamma(K';q) \text{ for any } n\text{-th root of unity } q & (\overline{t}_{2n}\text{-move}). \end{cases}$$

It is known that the Γ -polynomial is characterized as follows.

Lemma 1.3. ([5]) Let \mathcal{K} be the set of oriented knots. The image of \mathcal{K} under Γ is the following:

$$\Gamma(\mathcal{K}) = \left\{ 1 + (1-x)^2 f(x) \mid f(x) \in \mathbb{Z}[x^{\pm 1}] \right\}.$$

Lemma 1.4. ([3]) Let \mathcal{K}' be the set of 2-bridge knots with unknotting number one. Then we have

$$\Gamma(\mathcal{K}') = \Gamma(\mathcal{K}).$$

In particular, for any $K \in \mathcal{K}$, there exists an integer *i* such that $\Gamma(K; -1) = 1 + 4i$, and for any integer *j*, there exists $K \in \mathcal{K}'$ such that $\Gamma(K; -1) = 1 + 4j$. Since 2-bridge knots can be deformed into the unknot by 4-moves, we cannot show the 4-move is not an unknotting operation by using the Γ -polynomial. Immediately, we have the following corollary. Corollary 1.5.

$$\begin{split} &\Gamma(K;-1) \\ &\equiv \begin{cases} -\Gamma(K';-1) + (4k-2)(-1)^\ell \pmod{16k-8} & (t_{4k-2}\text{-move}, \, k \in \mathbb{N}), \\ \Gamma(K';-1) - 4k(-1)^\ell \pmod{16k} & (t_{4k}\text{-move}, \, k \in \mathbb{N}), \\ -\Gamma(K';-1) + 2(-1)^\ell \pmod{8} & (\overline{t}_{4k-2}\text{-move}, \, k \in \mathbb{N}), \\ \Gamma(K';-1) & (\overline{t}_{4k}\text{-move}, \, k \in \mathbb{N}). \end{cases} \end{split}$$

Therefore, by applying Lemma 1.3, we see that the 4k-move is not an unknotting operation for any integer $k \geq 2$, and if $\Gamma(K; -1) \equiv 9 \pmod{16}$ then the knot K cannot be deformed into the unknot by a single 4-move. By Lemma 1.3, we have $\Gamma(K; -1) \equiv 1, 5, 9, 13 \pmod{16}$ for any knot K. Here, we show a one-to-one correspondence between the value $\Gamma(K; -1) \pmod{16}$ and the pair $(a_2(K), a_4(K))$ of the second and fourth coefficients modulo 2 of the Alexander-Conway polynomial for a knot K as follows.

Theorem 1.6. Let $(a_2(K), a_4(K))$ be the pair of the second and fourth coefficients of the Alexander-Conway polynomial for a knot K. Then we have the following correspondence:

$$\begin{array}{ll} (a_2(K),a_4(K))\equiv (0,0) & (\mathrm{mod}\ 2) \Longleftrightarrow \Gamma(K;-1)\equiv 1 & (\mathrm{mod}\ 16), \\ (a_2(K),a_4(K))\equiv (0,1) & (\mathrm{mod}\ 2) \Longleftrightarrow \Gamma(K;-1)\equiv 9 & (\mathrm{mod}\ 16), \\ (a_2(K),a_4(K))\equiv (1,0) & (\mathrm{mod}\ 2) \Longleftrightarrow \Gamma(K;-1)\equiv 13 & (\mathrm{mod}\ 16), \\ (a_2(K),a_4(K))\equiv (1,1) & (\mathrm{mod}\ 2) \Longleftrightarrow \Gamma(K;-1)\equiv 5 & (\mathrm{mod}\ 16). \end{array}$$

Remark 1.7. The value $\Gamma(K; -1) \pmod{16}$ is also considered in [16] to study clasp disks with two clasp singularities.

2. The Γ -Polynomial for Oriented Links

The HOMFLYPT polynomial $P(L; y, z) \in \mathbb{Z}[y^{\pm 1}, z^{\pm 1}]$ and the Kauffman polynomial $F(L; a, b) \in \mathbb{Z}[a^{\pm 1}, b^{\pm 1}]$ of an oriented link L are computed by the following recursive formulas [2, 4, 14]:

For the unknot U, we have

$$P(U) = F(U) = 1.$$

For a triple (L_+, L_-, L_0) of oriented links which are identical except near one point as shown in Fig. 2, we have

$$yP(L_+) + y^{-1}P(L_-) = zP(L_0).$$

Therefore, we have

$$P(L; \sqrt{-1}, \sqrt{-1}z) = \nabla(L; z),$$

where $\nabla(L; z)$ is the Alexander-Conway polynomial.

H. Takioka

FIGURE 2. Skein triple.

For a quadruple $(D_+, D_-, D_0, D_\infty)$ of oriented link diagrams which are identical except near one point as shown in Fig. 3, we have

$$aF(D_+) + a^{-1}F(D_-) = b(F(D_0) + a^{-2\nu}F(D_\infty)),$$

where $2\nu = w(D_+) - w(D_\infty) - 1$ and $w(D_+)$, $w(D_\infty)$ are the writhes of D_+ , D_∞ , respectively. In particular, we call (L_+, L_-, L_0) , $(D_+, D_-, D_0, D_\infty)$ a skein triple, a skein quadruple, respectively. The HOMFLYPT and Kauffman polynomials of an

FIGURE 3. Skein quadruple.

oriented r-component link L are presented by the following:

$$P(L; y, z) = (yz)^{-r+1} \sum_{n \ge 0} p_n(L; y) z^{2n},$$

$$F(L; a, b) = (ab)^{-r+1} \sum_{n \ge 0} f_n(L; a) b^n,$$

where $p_n(L; y) \in \mathbb{Z}[y^{\pm 1}]$ and $f_n(L; a) \in \mathbb{Z}[a^{\pm 1}]$. In particular, $p_n(L; y)$ is a Laurent polynomial in the variable $-y^2$ for $n(\geq 0)$. Therefore, putting $-y^2 = x$, we denote $p_n(L; y)$ by $c_n(L; x) \in \mathbb{Z}[x^{\pm 1}]$, that is, $c_n(L; -y^2) = p_n(L; y)$. We call $c_n(L; x)$ and $f_n(L; a)$ the *n*-th coefficient HOMFLYPT and Kauffman polynomials of an oriented link *L*, respectively. As mentioned in the paper [10], we have

$$p_0(L;y) = f_0(L;y).$$

In particular, we call the zeroth coefficient HOMFLYPT polynomial $c_0(L; x)$ of an oriented link L the Γ -polynomial of L and denote it by $\Gamma(L; x) \in \mathbb{Z}[x^{\pm 1}]$. It is known that the following holds [5, 6, 7].

Proposition 2.1. (i) For the unknot U, we have

 $\Gamma(U) = 1.$

For a skein triple (L_+, L_-, L_0) , we have

$$-x\Gamma(L_{+}) + \Gamma(L_{-}) = \begin{cases} \Gamma(L_{0}) & \text{if } \delta = 0, \\ 0 & \text{if } \delta = 1, \end{cases}$$

where $\delta = (r_+ - r_0 + 1)/2$ (= 0, 1) for the numbers r_+ , r_0 of components of L_+ , L_0 , respectively.

(ii) Let $L \sqcup L'$ and L # L' be the split union and a connected sum of oriented links L and L', respectively. Then we have

$$\Gamma(L \sqcup L') = (1 - x)\Gamma(L \# L').$$

(iii) Let L # L' be a connected sum of oriented links L and L'. Then we have

$$\Gamma(L \# L') = \Gamma(L) \Gamma(L').$$

(iv) Let L be an oriented r-component link with the components K_1, \ldots, K_r and lk(L) the total linking number of L. Then we have

$$\Gamma(L) = (1-x)^{r-1} x^{-\operatorname{lk}(L)} \Gamma(K_1) \cdots \Gamma(K_r).$$

(v) For a skein triple $(K_+, K_-, K_1 \cup K_2)$ with oriented knots K_+, K_-, K_1, K_2 , we have

(1)
$$-x\Gamma(K_{+}) + \Gamma(K_{-}) = (1-x)x^{-\operatorname{lk}(K_{1}\cup K_{2})}\Gamma(K_{1})\Gamma(K_{2}).$$

(vi) Let K be an oriented knot. Then we have

 $\Gamma(K;1) = 1.$

(vii) Let -L be the inverse of an oriented link L, that is, the link obtained by reversing the orientation of each component of L. Then we have

$$\Gamma(-L) = \Gamma(L).$$

(viii) Let L^* be the mirror image of an oriented r-component link L. Then we have

$$\Gamma(L^*; x) = (-x)^{r-1} \Gamma(L; x^{-1}).$$

3. Proof of Theorem 1.1

First, we consider the case of the t_{2n} -move for a natural number n. By applying the skein relation (1) to the parallel 2n-half twists in the left-hand side of Fig. 1 as follows:

$$\Gamma(K)$$

= $x^{-n}\Gamma(K') - x^{-1}(1-x)x^{-(\ell+n-1)}\Gamma(K_1)\Gamma(K_2) - \dots - x^{-n}(1-x)x^{-\ell}\Gamma(K_1)\Gamma(K_2)$
= $x^{-n}\Gamma(K') - nx^{-(\ell+n)}(1-x)\Gamma(K_1)\Gamma(K_2).$

H. Takioka

Therefore, by applying Lemma 1.3, we have

$$\begin{split} &\Gamma(K;-1) \\ &= (-1)^n \Gamma(K';-1) - 2n(-1)^{\ell+n} \Gamma(K_1;-1) \Gamma(K_2;-1) \\ &= \begin{cases} -\Gamma(K';-1) + 2n(-1)^\ell \Gamma(K_1;-1) \Gamma(K_2;-1) & \text{if } n \text{ is odd,} \\ \Gamma(K';-1) - 2n(-1)^\ell \Gamma(K_1;-1) \Gamma(K_2;-1) & \text{if } n \text{ is even} \end{cases} \\ &= \begin{cases} -\Gamma(K';-1) + (4k-2)(-1)^\ell \Gamma(K_1;-1) \Gamma(K_2;-1) & \text{if } n = 2k-1 \ (k \in \mathbb{N}), \\ \Gamma(K';-1) - 4k(-1)^\ell \Gamma(K_1;-1) \Gamma(K_2;-1) & \text{if } n = 2k \ (k \in \mathbb{N}) \end{cases} \\ &= \begin{cases} -\Gamma(K';-1) + (4k-2)(-1)^\ell (1+4i+4j+16ij) & \text{if } n = 2k-1 \ (k \in \mathbb{N}), \\ \Gamma(K';-1) - 4k(-1)^\ell (1+4i+4j+16ij) & \text{if } n = 2k \ (k \in \mathbb{N}) \end{cases} \\ &= \begin{cases} -\Gamma(K';-1) + (4k-2)(-1)^\ell \ (\text{mod } 16k-8) & \text{if } n = 2k-1 \ (k \in \mathbb{N}), \\ \Gamma(K';-1) - 4k(-1)^\ell \ (\text{mod } 16k) & \text{if } n = 2k \ (k \in \mathbb{N}). \end{cases} \end{split}$$

Next, we consider the case of the \bar{t}_{2n} -move for a natural number n. By applying the skein relation (1) to the antiparallel 2n-half twists in the right-hand side of Fig. 1 as follows:

$$\Gamma(K)$$

$$= x^{n} \Gamma(K') + (1-x) x^{-\ell} \Gamma(K_{1}) \Gamma(K_{2}) + \dots + x^{n-1} (1-x) x^{-\ell} \Gamma(K_{1}) \Gamma(K_{2})$$

$$= x^{n} \Gamma(K') + (1+\dots+x^{n-1}) (1-x) x^{-\ell} \Gamma(K_{1}) \Gamma(K_{2})$$

$$= x^{n} \Gamma(K') + ((1-x^{n})/(1-x)) (1-x) x^{-\ell} \Gamma(K_{1}) \Gamma(K_{2})$$

$$= x^{n} \Gamma(K') + (1-x^{n}) x^{-\ell} \Gamma(K_{1}) \Gamma(K_{2}).$$

Therefore, by applying Lemma 1.3, we have

$$\begin{split} &\Gamma(K;-1) \\ &= (-1)^n \Gamma(K';-1) + (1-(-1)^n)(-1)^\ell \Gamma(K_1;-1) \Gamma(K_2;-1) \\ &= \begin{cases} -\Gamma(K';-1) + 2(-1)^\ell \Gamma(K_1;-1) \Gamma(K_2;-1) & \text{if } n \text{ is odd}, \\ \Gamma(K';-1) & \text{if } n \text{ is even} \end{cases} \\ &= \begin{cases} -\Gamma(K';-1) + 2(-1)^\ell (1+4i+4j+16ij) & \text{if } n \text{ is odd}, \\ \Gamma(K';-1) & \text{if } n \text{ is even} \end{cases} \\ &\equiv \begin{cases} -\Gamma(K';-1) + 2(-1)^\ell (\mod 8) & \text{if } n \text{ is odd}, \\ \Gamma(K';-1) & \text{if } n \text{ is even}. \end{cases} \end{split}$$

This completes the proofs of Theorem 1.1 and Corollary 1.5.

4. Proof of Theorem 1.6

It is known that the following lemmas hold.

516

Lemma 4.1. ([11]) Let $a_2(K)$ be the second coefficient of the Alexander-Conway polynomial of a knot K.

(2)
$$\sum_{n\geq 0} 2^n c_n(K;-1) = (-1)^{a_2(K)}.$$

Lemma 4.2. ([9])

(3)
$$\sum_{n \ge 0} 4^n c_n(K; -1) = 1.$$

By $(2) \times 2 + (3)$, we have the following lemma.

Lemma 4.3.

$$3\Gamma(K;-1) + 8c_1(K;-1) + 8c_2(K;-1) \equiv 2(-1)^{a_2(K)} + 1 \pmod{16}.$$

We can see the following lemma easily.

Lemma 4.4. Let $a_{2n}(K)$ be the 2n-th coefficient of the Alexander-Conway polynomial of a knot K for $n \ge 0$.

$$c_n(K;-1) \equiv c_n(K;1) \equiv a_{2n}(K) \pmod{2}.$$

Here, we denote $a_2(K)$, $a_4(K)$, $\Gamma(K; -1)$ by a_2 , a_4 , Γ , respectively. We prove Theorem 1.6 as follows:

- (1) We start with $(a_2, a_4) \equiv (0, 0) \pmod{2}$. By Lemmas 4.3, 4.4, $\Gamma \equiv 1 \pmod{16}$. Conversely, we start with $\Gamma \equiv 1 \pmod{16}$. Assume $a_2 \equiv 1 \pmod{2}$. By Lemmas 4.3, 4.4, $8c_2(K; -1) \equiv 4 \pmod{16}$. This contradicts. Therefore, $a_2 \equiv 0 \pmod{2}$. By Lemmas 4.3, 4.4, $a_4 \equiv 0 \pmod{2}$.
- (2) We start with $(a_2, a_4) \equiv (0, 1) \pmod{2}$. By Lemmas 4.3, 4.4, $\Gamma \equiv 9 \pmod{16}$. Conversely, we start with $\Gamma \equiv 9 \pmod{16}$. Assume $a_2 \equiv 1 \pmod{2}$. By Lemmas 4.3, 4.4, $8c_2(K; -1) \equiv -4 \pmod{16}$. This contradicts. Therefore, $a_2 \equiv 0 \pmod{2}$. By Lemmas 4.3, 4.4, $a_4 \equiv 1 \pmod{2}$.
- (3) We start with $(a_2, a_4) \equiv (1, 0) \pmod{2}$. By Lemmas 4.3, 4.4, $\Gamma \equiv 13 \pmod{16}$. Conversely, we start with $\Gamma \equiv 13 \pmod{16}$. Assume $a_2 \equiv 0 \pmod{2}$. By Lemmas 4.3, 4.4, $8c_2(K; -1) \equiv -4 \pmod{16}$. This contradicts. Therefore, $a_2 \equiv 1 \pmod{2}$. By Lemmas 4.3, 4.4, $a_4 \equiv 0 \pmod{2}$.
- (4) We start with $(a_2, a_4) \equiv (1, 1) \pmod{2}$. By Lemmas 4.3, 4.4, $\Gamma \equiv 5 \pmod{16}$. Conversely, we start with $\Gamma \equiv 5 \pmod{16}$. Assume $a_2 \equiv 0 \pmod{2}$. By Lemmas 4.3, 4.4, $8c_2(K; -1) \equiv 4 \pmod{16}$. This contradicts. Therefore, $a_2 \equiv 1 \pmod{2}$. By Lemmas 4.3, 4.4, $a_4 \equiv 1 \pmod{2}$.

This completes the proof of Theorem 1.6.

References

- [1] R. H. Fox, Congruence classes of knots, Osaka Math. J., **10**(1958), 37–41.
- [2] P. Freyd, D. Yetter, J. Hoste, W. B. R. Lickorish, K. Millett and A. Ocneanu, A new polynomial invariant of knots and links, Bull. Amer. Math. Soc., 12(1985), 239–246.
- [3] H. Fujii, First common terms of the HOMFLY and Kauffman polynomials, and the Conway polynomial of a knot, J. Knot Theory Ramifications, 8(4)(1999), 447–462.
- [4] L. H. Kauffman, An invariant of regular isotopy, Trans. Amer. Math. Soc., 318(1990), 417–471.
- [5] A. Kawauchi, On coefficient polynomials of the skein polynomial of an oriented link, Kobe J. Math., 11(1994), 49–68.
- [6] A. Kawauchi, A Survey of Knot Theory, Birkhäuser, Basel, (1996).
- [7] A. Kawauchi, *Lectures on knot theory* (in Japanese), Kyoritsu Shuppan, (2007).
- [8] S. Kinoshita, On Wendt's theorem of knots, Osaka Math. J., 9(1957), 61–66.
- [9] W. B. R. Lickorish and K. C. Millett, A polynomial invariant of oriented links, Topology, 26(1987), 107–141.
- [10] W. B. R. Lickorish, Polynomials for links, Bull. London Math. Soc., 20(1988), 558–588.
- [11] H. Murakami, A recursive calculation of the Arf invariant of a link, J. Math. Soc. Japan, 38(2)(1986), 335–338.
- [12] Y. Nakanishi, Fox's congruence modulo (2, 1), Sūrikaisekikenkyūsho Kōkyūroku 518(1984), 96–101.
- [13] Y. Nakanishi and S. Suzuki, On Fox's congruence classes of knots, Osaka J. Math., 24(1987), 217–225.
- [14] J. H. Przytycki and P. Traczyk, Invariants of links of Conway type, Kobe J. Math., 4(1987), 115–139.
- [15] J. H. Przytycki, t_k moves on links, Braids (Santa Cruz, CA, 1986), 615–656, Contemp. Math., **78**, Amer. Math. Soc., Providence, RI, 1988.
- [16] H. Takioka, A characterization of the Γ-polynomials of knots with clasp number at most two, J. Knot Theory Ramifications, 26(4)(2017), 1750013.