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ABSTRACT. A 2n-move is a local change for knots and links which changes 2n-half twists to
0-half twists or vice versa for a natural number n. In 1979, Yasutaka Nakanishi conjectured
that the 4-move is an unknotting operation. This is still an open problem. It is known that
the I'-polynomial is an invariant for oriented links which is the common zeroth coefficient
polynomial of the HOMFLYPT and Kauffman polynomials. In this paper, we show that the
4k-move is not an unknotting operation for any integer k(> 2) by using the I'-polynomial,
and if I'(K;—1) = 9 (mod 16) then the knot K cannot be deformed into the unknot by a
single 4-move. Moreover, we give a one-to-one correspondence between the value I'(K; —1)
(mod 16) and the pair (a2(K), as(K)) (mod 2) of the second and fourth coefficients of the
Alexander-Conway polynomial for a knot K.

1. Introduction

As mentioned in the papers [1, 8, 12, 13, 15], a local change for oriented knots K
and K’ in the left-hand side of Fig. 1 is called a ts,-move and that in the right-hand
side of Fig. 1 is called a o, -move, both of which change 2n-half twists to 0-half twists
or vice versa for a natural number n, where dotted arcs in Fig. 1 can be knotted and
linked. Moreover, the unoriented version of ta,, ta,-moves is called a 2n-move. In
1979, Yasutaka Nakanishi conjectured that the 4-move is an unknotting operation.
This is still an open problem. It is known that the I'-polynomial is an invariant for
oriented links which is the common zeroth coefficient polynomial of the HOMFLYPT
and Kauffman polynomials. (See Sect. 2.) In this paper, we study 2n-moves and
the I'-polynomial for knots. By applying the skein relation (1), we have the following
theorem.
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FIGURE 1. tg,, ta,-moves.

Theorem 1.1. Let n be a natural number. Let K, K', K1, Ky be oriented knots as
shown in Fig. 1. Let ¢ be the linking number of K1 and K. Then we have
I(K) = " T(K') — na= ) (1 — 2)T(K)D(K2)  (tap-move),
| 2"T(K) + (1 — 2™)aT(K)T(K>) (fan-move).

From this, we have the following corollary.

Corollary 1.2.

I'K) =2 "TI'(K') in Z,[z*] (tan-move),
I'(K;q) =T(K';q) for any n-th root of unity ¢ (f2,-move).

It is known that the I'-polynomial is characterized as follows.

Lemma 1.3. ([5]) Let X be the set of oriented knots. The image of X under T' is
the following:
I(K)={1+(1-2)f(z)]| f(z) € Z[z*"]}.

Lemma 1.4. ([3]) Let X' be the set of 2-bridge knots with unknotting number one.
Then we have
['(X') =['(X).

In particular, for any K € X, there exists an integer 7 such that I'(K;—1) = 1 + 44,
and for any integer j, there exists K € X’ such that I'(K; —1) = 1+4j. Since 2-bridge
knots can be deformed into the unknot by 4-moves, we cannot show the 4-move is
not an unknotting operation by using the I'-polynomial. Immediately, we have the
following corollary.
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Corollary 1.5.

I(K;-1)
~T(K';—1) + (4k — 2)(=1)* (mod 16k — 8)
[(K';—1) — 4k(—1)* (mod 16k)
~T(K';—1) +2(-1)* (mod 8)
I(K’;-1)

tap—o-move, k € N),
tag-move, k € N),
1k—o-move, k € N),
a-move, k € N).

Therefore, by applying Lemma 1.3, we see that the 4k-move is not an unknotting
operation for any integer k(> 2), and if I'(K;—1) = 9 (mod 16) then the knot K
cannot be deformed into the unknot by a single 4-move. By Lemma 1.3, we have
I'(K;—-1) =1,5,9,13 (mod 16) for any knot K. Here, we show a one-to-one corre-
spondence between the value I'(K; —1) (mod 16) and the pair (a(K), as(K)) of the
second and fourth coefficients modulo 2 of the Alexander-Conway polynomial for a
knot K as follows.

Theorem 1.6. Let (a2(K),as(K)) be the pair of the second and fourth coefficients
of the Alexander-Conway polynomial for a knot K. Then we have the following
correspondence:

(a2(K),as(K)) = (0,0) (mod 2) <= T'(K;—1)=1 (mod 16),
(a2(K),as(K)) =(0,1) (mod 2) <= T'(K;—-1)=9 (mod 16),
(a2(K),a4(K)) = (1,0) (mod2) <= T'(K;—1)=13 (mod 16),
(a2(K),as4(K)) =(1,1) (mod 2) <= T'(K;—-1)=5 (mod 16)

Remark 1.7. The value T'(K; —1) (mod 16) is also considered in [16] to study clasp
disks with two clasp singularities.

2. The I'-Polynomial for Oriented Links

The HOMFLYPT polynomial P(L;y, z) € Z[y*", 2*!] and the Kauffman polyno-
mial F(L;a,b) € Zla*!,b*1] of an oriented link L are computed by the following
recursive formulas [2, 4, 14]:

For the unknot U, we have

PU)=F(U)=1.
For a triple (L, L_, Lg) of oriented links which are identical except near one point
as shown in Fig. 2, we have

yP(Ly)+y~'P(L-) = 2P(Lo).

Therefore, we have
P(Lv \% 71; \% 712) = V(L,Z),

where V(L; z) is the Alexander-Conway polynomial.
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FIGURE 2. Skein triple.

For a quadruple (D4, D_, Dy, Do) of oriented link diagrams which are identical
except near one point as shown in Fig. 3, we have
aF(Dy)+a 'F(D_) =b(F(Dg) +a *F(Dy)),

where 2v = w(D4) — w(Do) — 1 and w(D4), w(Dy) are the writhes of D, Do,
respectively. In particular, we call (Ly,L_, Lg), (D4, D_, Dy, D) a skein triple, a
skein quadruple, respectively. The HOMFLYPT and Kauffman polynomials of an

A XHCX
D, D_ Dy Do

FI1GURE 3. Skein quadruple.

oriented r-component link I are presented by the following:

P(Lyy,2) = (y2) ") palLiy)2™",
n>0

F(L;a,b) = (ab) ™"y fu(Lia)b",
n>0

where p,(L;y) € Zy™'] and f,(L;a) € Z[a*!]. In particular, p,(L;y) is a Laurent
polynomial in the variable —y? for n(> 0). Therefore, putting —y? = x, we denote
Pn(L;y) by cn(L;x) € Z[zTY], that is, ¢, (L; —y?) = pn(L;y). We call ¢, (L;z) and
fn(L;a) the n-th coefficient HOMFLYPT and Kauffman polynomials of an oriented
link L, respectively. As mentioned in the paper [10], we have

po(L;y) = fo(Lsy).
In particular, we call the zeroth coefficient HOMFLYPT polynomial ¢o(L;z) of an
oriented link L the I'-polynomial of L and denote it by I'(L; z) € Z[z*!]. It is known
that the following holds [5, 6, 7].

Proposition 2.1. (i) For the unknot U, we have
NU)=1.
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For a skein triple (L, L_, L), we have

—aD(Ly) + (L) = {E(LO) ng z (1)

where § = (ry —rg+1)/2 (=0,1) for the numbers r4, ro of components of Ly, Lo,
respectively.

(ii) Let LU L and L#L' be the split union and a connected sum of oriented links L
and L', respectively. Then we have

D(LUL) = (1 - 2)T(L#L).
(iil) Let L#L' be a connected sum of oriented links L and L'. Then we have
D(L#L') = D(L)D(L).

(iv) Let L be an oriented r-component link with the components K1, ..., K, and k(L)
the total linking number of L. Then we have

D(L)=(1—z) a2~ *DIP(Ky) - T(K,).

(v) For a skein triple (K1, K_, K; U Ks) with oriented knots Ky, K_, K1, Ko, we
have

(1) —2D(K) 4+ T(K_) = (1 — z)a~ WV D (KT (KS).
(vi) Let K be an oriented knot. Then we have
INK;1)=1.

(vii) Let —L be the inverse of an oriented link L, that is, the link obtained by reversing
the orientation of each component of L. Then we have

I(—-L) =T(L).
(viii) Let L* be the mirror image of an oriented r-component link L. Then we have

[(L*;2) = (—2) " 'T(L; 27 h).

3. Proof of Theorem 1.1

First, we consider the case of the to,-move for a natural number n. By applying
the skein relation (1) to the parallel 2n-half twists in the left-hand side of Fig. 1 as
follows:

I'(K)
=2 "T(K') — 27 (1 — 2)a” IR (K)D(Ky) — - — 27 (1 — 2)a D (K)T(K>)
= 2 "I(K') — nz~ (1 — 2)D (KT (Ky).
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Therefore, by applying Lemma 1.3, we have

I'(K;-1)

= (-1 ”F(K’ —1) — 2n(=1)"T"T(K;; —1)T(Ky; —1)
) =T(K'=1) + 2n(=1)'T(Ky; - 1) (K2; —1)  if n is odd,
C DK -1) = 2n(—=1)T(Ky; —1)T(Ko; —1)  if n is even
T —1 + (4k — 2)(=1)'T(Ky; —1)[(K2; 1)  ifn=2k—1 (k€ N),
DK 1) — 4k(=1)'T(Ky; —1)T(Kg; —1) if n =2k (k € N)
_ DK -1 + (4k — 2)(=1)%(1 + 4i + 45 + 16i5) ifn=2k—1 (k € N),
D(K';—1) — 4k(—1)%(1 + 43 + 45 + 16i5) if n = 2k (k € N)

| -D(K';=1) + (4k — 2)(=1)*  (mod 16k —8) ifn =2k —1 (k € N),
- F(K’, —1) — 4k(-1)* (mod 16k) if n =2k (k € N).

Next, we consider the case of the ts,-move for a natural number n. By applying the
skein relation (1) to the antiparallel 2n-half twists in the right-hand side of Fig. 1 as
follows:

—

(K)

= 2"T(K') + (1 — 2)a ' T(K)T(Ky) + - + 2" (1 — 2)2 ™ T (K)T(Ky)
= 2"T(K') 4+ 1+ 42" (1 — 2)a™ T(K)T(K>)

= 2"T(K') + (1 —2") /(1 = 2))(1 — )z~ T(K1)T(K2)

= 2"T(K') 4+ (1 — 2™)z~ ‘T (K;)T(K>).

/

Therefore, by applying Lemma 1.3, we have

I(K;-1)

= (—1)"T(K'; =1) + (1 = (=1)")(=1) T (K1; 1) (K2 —1)

DK =1) + 2(—1) T (Ky; —1)D(Ka; —1)  if o is odd,
DK -1) if n is even
DK =1) + 2(=1) (1 + 4i + 45 + 16i5)  if n is odd,

DK -1) if n is even
_ ) -T(K=1) +2(=1)"  (mod 8) if n is odd,

| (K1) if n is even.

This completes the proofs of Theorem 1.1 and Corollary 1.5.

4. Proof of Theorem 1.6

It is known that the following lemmas hold.
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Lemma 4.1. ([11]) Let az(K) be the second coefficient of the Alexander-Conway
polynomial of a knot K.

(2) 22”%(1(;—1) — (—1)2=),

n>0

Lemma 4.2. ([9])
(3) D Are, (Ki-1) =1.

By (2) x 2+ (3), we have the following lemma.

Lemma 4.3.
30(K; —1) + 8¢y (K; —1) 4 8¢o(K; —1) = 2(=1)2%) £ 1 (mod 16).

We can see the following lemma easily.

Lemma 4.4. Let as, (K) be the 2n-th coefficient of the Alexander-Conway polynomial
of a knot K forn > 0.

cn(K;—1) = ¢, (K1) = agn(K)  (mod 2).

Here, we denote ag(K), as(K), T'(K;—1) by as, a4, T', respectively. We prove Theo-
rem 1.6 as follows:

(1) We start with (az2,a4) = (0,0) (mod 2). By Lemmas4.3,4.4,' =1 (mod 16).
Conversely, we start with I' = 1 (mod 16). Assume as = 1 (mod 2). By
Lemmas 4.3, 4.4, 8¢cy(K;—1) = 4 (mod 16). This contradicts. Therefore,
as =0 (mod 2). By Lemmas 4.3, 4.4, a4 =0 (mod 2).

(2) We start with (a2,a4) = (0,1) (mod 2). By Lemmas 4.3, 4.4, ' =9 (mod 16).
Conversely, we start with I' = 9 (mod 16). Assume a2 = 1 (mod 2). By
Lemmas 4.3, 4.4, 8¢cy(K;—1) = —4 (mod 16). This contradicts. Therefore,
az =0 (mod 2). By Lemmas 4.3, 4.4, ag = 1 (mod 2).

(3) We start with (az,a4) = (1,0) (mod 2). By Lemmas 4.3, 44, I' = 13
(mod 16). Conversely, we start with I' = 13 (mod 16). Assume as = 0
(mod 2). By Lemmas 4.3, 4.4, 8¢cy(K; —1) = —4 (mod 16). This contradicts.
Therefore, a; =1 (mod 2). By Lemmas 4.3, 4.4, a4 =0 (mod 2).

(4) We start with (ag,a4) = (1,1) (mod 2). By Lemmas 4.3, 4.4, T =5 (mod 16).
Conversely, we start with I' = 5 (mod 16). Assume a2 = 0 (mod 2). By
Lemmas 4.3, 4.4, 8¢3(K;—1) = 4 (mod 16). This contradicts. Therefore,
az =1 (mod 2). By Lemmas 4.3, 4.4, ag = 1 (mod 2).
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This completes the proof of Theorem 1.6.
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