ON THE CHARACTER RINGS OF TWIST KNOTS

Fumikazu Nagasato

Dedicated to Professor Akio Kawauchi for his 60th birthday

ABSTRACT. The Kauffman bracket skein module $\mathcal{K}_t(M)$ of a 3-manifold M becomes an algebra for t=-1. We prove that this algebra has no non-trivial nilpotent elements for M being the exterior of the twist knot in 3-sphere and, therefore, it is isomorphic to the $\mathrm{SL}_2(\mathbb{C})$ -character ring of the fundamental group of M. Our proof is based on some properties of Chebyshev polynomials.

1. Introduction

In this paper, we show a property of the Kauffman bracket skein module (KBSM for short) by using polynomials $S_n(z)$ $(n \in \mathbb{Z})$ in an indeterminate z defined by the following recursive relation:

$$S_{n+2}(z) = zS_{n+1}(z) - S_n(z), \ S_1(z) = z, \ S_0(z) = 1.$$

The polynomial $S_n(z)$ can be transformed into the Chebyshev polynomial of the second type $U_n(z)$ defined by

$$U_{n+2}(z) = 2zU_{n+1}(z) - U_n(z), \ U_1(z) = 2z, \ U_0(z) = 1.$$

Indeed, $U_n(z) = S_n(2z)$ holds for any $n \ge 0$.

In Theorem 2.1 of [3], Bullock and LoFaro found that the KBSM $\mathcal{K}_t(E_{K_m})$ of the exterior E_{K_m} of an m-twist knot K_m $(m \ge 0)$ in 3-sphere \mathbb{S}^3 is generated as $\mathbb{C}[t,t^{-1}]$ -module by x^py^q $(p,q \in \mathbb{Z}_{>0},m \ge q)$:

$$\mathcal{K}_t(E_{K_m}) = \operatorname{Span}_{\mathbb{C}[t,t^{-1}]} \{ x^p y^q \mid p, q \in \mathbb{Z}_{\geq 0}, \ m \geq q \},$$

where x^py^q means the isotopy class of the disjoint union of p parallel copies of an annulus \tilde{x} and q parallel copies of an annulus \tilde{y} in E_{K_m} (see Figure 1). Namely, the set $\{x^py^q\}_{p,q\in\mathbb{Z}_{>0},m\geq q}$ forms a basis of $\mathcal{K}_t(E_{K_m})$ as $\mathbb{C}[t,t^{-1}]$ -module. In [5],

Received May 28, 2009; Revised March 19, 2010.

 $^{2010\ \}textit{Mathematics Subject Classification}.\ \textit{Primary 57M27};\ \textit{Secondary 57M25}.$

Key words and phrases. character variety, character ring, Chebyshev polynomial, Kauffman bracket skein module.

all the factorization relations for $\mathcal{K}_t(E_{K_m})$ are given. For example, the element $R_m(t)$ in $\mathcal{K}_t(E_{K_m})$ expressed by

$$R_m(t) := S_{m+1}(y) + (t^{-6} - t^{-2}x^2)S_m(y) + ((2t^4 + t^{-8})x^2 - t^{-4})S_{m-1}(y)$$
$$-t^{-10}S_{m-2}(y) + 2x^2(t^{-2m-2} + t^{-2m-6})\sum_{i=0}^{m-2} t^{2i}S_i(y) - t^{-2m-6}x^2$$

gives a factorization relation for $S_{m+1}(y)$ or y^{m+1} :

Theorem 1 (Theorem 4 in [5]). $R_m(t) = 0$ in $\mathcal{K}_t(E_{K_m})$.

FIGURE 1. an m-twist knot K_m in \mathbb{S}^3 and annuli \tilde{x} and \tilde{y} in E_{K_m}

By Lemma 7 of [5] the polynomial $R_m(-1)$ at t = -1, which has the following factorization

$$R_m(-1) = (y+2) \left(S_m(y) - S_{m-1}(y) + x^2 \sum_{i=0}^{m-1} S_i(y) \right),$$

has no repeated factors over the rational number field \mathbb{Q} . This paper generalizes this property to the case of the complex number field \mathbb{C} :

Theorem 2. $R_m(-1)$ has no repeated factors over \mathbb{C} .

In fact, Theorem 2 shows that the KBSM $\mathcal{K}_{-1}(E_{K_m})$ for t=-1, which is a \mathbb{C} -algebra generated by x and y, has no non-trivial nilpotent elements. Then it follows from Theorem 3 in Subsection 2.2 that $\mathcal{K}_{-1}(E_{K_m})$ is isomorphic to the $\mathrm{SL}_2(\mathbb{C})$ -character $ring\ \chi(G_{K_m})$ of the twist knot K_m :

Corollary 1. For any $m \in \mathbb{Z}_{>0}$,

$$\chi(G_{K_m}) \cong \mathcal{K}_{-1}(E_{K_m}) = \mathbb{C}[x,y]/\langle R_m(-1)\rangle,$$

where $\langle R_m(-1) \rangle$ means the ideal in $\mathbb{C}[x,y]$ generated by $R_m(-1)$.

In this paper, we explain these facts, especially Theorem 2 and Corollary 1 by using the polynomials $S_n(z)$.

2. Character rings

2.1. Character rings

Let G be a finitely generated and presented group, and R(G) the set of all the representations $\rho: G \to \mathrm{SL}_2(\mathbb{C})$. For each element g in G, we can define a function t_g on R(G) by $t_g(\rho) := \mathrm{tr}(\rho(g))$. Let T denote the ring generated by all the functions t_g , $g \in G$. By Proposition 1.4.1 in [4], the ring T is finitely generated. So we can fix a finite set $\{g_1,\ldots,g_n\}$ of G (n>0) such that t_{g_1},\ldots,t_{g_n} generate T. Then the image of R(G) under the map

$$t: R(G) \to \mathbb{C}^n, \ t(\rho) := (t_{q_1}(\rho), \dots, t_{q_n}(\rho)), \ \rho \in R(G)$$

is a closed algebraic set (refer to Corollary 1.4.5 in [4]), denoted by X(G). This algebraic set X(G) is called the $\mathrm{SL}_2(\mathbb{C})$ -character variety of G (For details, refer to [4]).

As X(G) is an algebraic set, we can consider its coordinate ring as follows. Suppose X(G) is an algebraic set in complex space \mathbb{C}^m (m > 0). Let I(X(G)) be the ideal of the polynomial ring $\mathbb{C}[x_1, \ldots, x_m]$ that consists entirely of polynomials vanishing on X(G). Then the coordinate ring of X(G), denoted by $\chi(G)$, is defined as the quotient polynomial ring $\mathbb{C}[x_1, \ldots, x_m]/I(X(G))$. This quotient ring $\chi(G)$ is called the $\mathrm{SL}_2(\mathbb{C})$ -character ring of G. For a knot group G_K , which is the fundamental group of the exterior E_K , we call $\chi(G_K)$ the $\mathrm{SL}_2(\mathbb{C})$ -character ring of the knot K.

2.2. Character rings from the KBSM point of view

The $SL_2(\mathbb{C})$ -character ring of a knot can be studied by using the KBSM. We quickly review a way to do it. For details, refer to [2], [6] and [7].

For a compact oriented 3-manifold M, let $\mathcal{L}_t(M)$ be the $\mathbb{C}[t, t^{-1}]$ -module generated by all the isotopy classes of framed links in M (including the empty link \emptyset). Then the KBSM $\mathcal{K}_t(M)$ of M is defined as the quotient of $\mathcal{L}_t(M)$ by the Kauffman bracket skein relations as below:

where L is any framed link in M and " \sqcup " means the disjoint union.

It is known that the KBSM $\mathcal{K}_{-1}(M)$ for t=-1 becomes a \mathbb{C} -algebra with a multiplication \sqcup (the unit in $\mathcal{K}_{-1}(M)$ is the empty link \emptyset). For example, $\mathcal{K}_{-1}(E_{K_m})$ becomes $\mathbb{C}[x,y]/\langle R_m(-1)\rangle$. The \mathbb{C} -algebra $\mathcal{K}_{-1}(M)$ is naturally linked to the $\mathrm{SL}_2(\mathbb{C})$ -character ring $\chi(\pi_1(M))$ of the fundamental group $\pi_1(M)$ as follows.

Theorem 3 ([2], [7]). For any compact orientable 3-manifold M, there exists a surjective homomorphism Φ as \mathbb{C} -algebra

$$\Phi: \mathcal{K}_{-1}(M) \to \chi(\pi_1(M)),$$

defined by $\Phi(K) := -t_{[K]}$, $\Phi(K_1 \sqcup \cdots \sqcup K_i) := \prod_{j=1}^i \Phi(K_i)$, where [K] is an element of $\pi_1(M)$ represented by the knot K with an unspecified orientation and a base point. Moreover the kernel of Φ is the nilradical $\sqrt{0}$.

By Theorem 3, the $\operatorname{SL}_2(\mathbb{C})$ -character ring $\chi(G_{K_m})$ of the m-twist knot K_m is isomorphic to $\mathcal{K}_{-1}(E_{K_m})/\sqrt{0}$. So if $\mathcal{K}_{-1}(E_{K_m})$ has no non-trivial nilpotent elements, then $\mathcal{K}_{-1}(E_{K_m})$ is isomorphic to $\chi(G_{K_m})$.

3. Proof of Theorem 2

To prove Theorem 2 we do not use any topological properties of the twist knots but some algebraic properties of the polynomials $S_n(z)$.

Proof of Theorem 2. Let $\widetilde{R}_m(x,y)$ be the factor

$$S_m(y) - S_{m-1}(y) + x^2 \sum_{i=0}^{m-1} S_i(y)$$

of $R_m(-1)$. First we show that $\widetilde{R}_m(x,y)$ has no repeated factors in the factorization over \mathbb{C} .

Assume that $\widetilde{R}_m(x,y)$ has a repeated factor in the factorization over \mathbb{C} . Then $\widetilde{R}_m(x,y)$ is reducible over \mathbb{C} . In this situation, we have the following two cases for the factorization of $\widetilde{R}_m(x,y)$ in terms of the variable x:

- (ax + b)(cx + d), where $a, b, c, d \in \mathbb{C}[y]$,
- $(ax^2 + b)c$, where $a, b, c \in \mathbb{C}[y]$, $ax^2 + b$ is irreducible over \mathbb{C} .

We see that the first case never happens, because if it happens, then the equation

$$acx^{2} + (ad + bc)x + bd = S_{m}(y) - S_{m-1}(y) + x^{2} \sum_{i=0}^{m-1} S_{i}(y)$$

must hold. So we have

$$ac = \sum_{i=0}^{m-1} S_i(y), \ ad + bc = 0, \ bd = S_m(y) - S_{m-1}(y).$$

Let us focus on the degree of the above three equations in terms of y. Note that $deg(S_m(y))$ is m by definition.

$$\deg(a) + \deg(c) = m - 1, \ \deg(a) + \deg(d) = \deg(b) + \deg(c),$$
$$\deg(b) + \deg(d) = m.$$

Combining these equations, we have

$$2\deg(a) = 2\deg(b) - 1,$$

i.e., an even number equals an odd number, a contradiction.

We can also check that the second case never happens by using algebraic properties of the polynomials $S_m(y)$ as follows. For the second case, the equation

$$acx^{2} + bc = S_{m}(y) - S_{m-1}(y) + x^{2} \sum_{i=0}^{m-1} S_{i}(y)$$

must hold. In particular, the following equation is required:

$$bc = S_m(y) - S_{m-1}(y).$$

Note that the Chebyshev polynomial $U_m(y) = S_m(2y)$ has the property

$$U_m(\cos\theta) = \sin(m+1)\theta/\sin\theta$$

(refer to [1] for example). By this property, for any integer $0 \le i \le m-1$, we obtain

$$S_m \left(2\cos\frac{2i+1}{2m+1}\pi \right) - S_{m-1} \left(2\cos\frac{2i+1}{2m+1}\pi \right)$$

$$= \frac{1}{\sin\frac{2i+1}{2m+1}\pi} \left(\sin\left(i + \frac{1}{2} + \frac{i + \frac{1}{2}}{2m+1}\right)\pi - \sin\left(i + \frac{1}{2} - \frac{i + \frac{1}{2}}{2m+1}\right)\pi \right)$$

$$= 0.$$

Note that the degree of $S_m(y) - S_{m-1}(y)$ in terms of y is m by definition. Thus we see that $S_m(y) - S_{m-1}(y)$ has the following nice factorization:

$$S_m(y) - S_{m-1}(y) = \prod_{i=0}^{m-1} \left(y - 2\cos\frac{2i+1}{2m+1}\pi \right).$$

So $S_m(y) - S_{m-1}(y)$ has no repeated factors. Hence bc, especially c has no repeated factors. Then $ax^2 + b$ must have a repeated factor, a contradiction. Therefore $\widetilde{R}_m(x,y)$ has no repeated factors over \mathbb{C} .

It is clear that $\widetilde{R}_m(x,y)$ does not have the factor y+2 (for example, use the fact that $S_m(-2) - S_{m-1}(-2) \neq 0$). These facts complete the proof.

It follows from Theorem 2 and a property of radicals that $\sqrt{\langle R_m(-1)\rangle}$ coincides with $\langle R_m(-1)\rangle$. So we have

$$\mathcal{K}_{-1}(E_{K_m})/\sqrt{0} = \mathbb{C}[x,y]/\sqrt{\langle R_m(-1)\rangle} = \mathbb{C}[x,y]/\langle R_m(-1)\rangle = \mathcal{K}_{-1}(E_{K_m}),$$

which shows that $\mathcal{K}_{-1}(E_{K_m})$ has no non-trivial nilpotent elements. This fact and Theorem 3 prove Corollary 1.

Acknowledgement. The author would like to thank an anonymous referee for useful suggestions on an earlier version of this paper. The author has been partially supported by Grant-in-Aid for Young Scientists (Start-up), Japan Society for the Promotion of Science.

References

- M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, New York, Dover, 1972.
- [2] D. Bullock, Rings of SL₂(C)-characters and the Kauffman bracket skein module, Comment. Math. Helv. 72 (1997), no. 4, 521–542.
- [3] D. Bullock and W. LoFaro, The Kauffman bracket skein module of a twist knot exterior, Algebr. Geom. Topol. 5 (2005), 107–118.
- [4] M. Culler and P. Shalen, Varieties of group representations and splittings of 3-manifolds, Ann. of Math. (2) 117 (1983), no. 1, 109–146.
- [5] R. Gelca and F. Nagasato, Some results about the Kauffman bracket skein module of the twist knot exterior, J. Knot Theory Ramifications 15 (2006), no. 8, 1095–1106.
- [6] J. Przytycki, Skein modules of 3-manifolds, Bull. Pol. Acad. Sci. Math. 39 (1991), no. 1-2, 91-100.
- [7] J. H. Przytycki and A. S. Sikora, On skein algebras and Sl₂(C)-character varieties, Topology 39 (2000), no. 1, 115–148.

DEPARTMENT OF MATHEMATICS
MEIJO UNIVERSITY
TEMPAKU, NAGOYA 468-8502, JAPAN
E-mail address: fukky@meijo-u.ac.jp