• Title/Summary/Keyword: Kalopanax pictus (KP)

Search Result 9, Processing Time 0.028 seconds

Synergistic Effect of Methanol Extract from Kalopanax pictus and Ascorbic Acid on Antioxidant, Anticancer and Immunomodulatory Activities (음나무(Kalopanax pictus) 추출물과 비타민 C의 항산화, 항암 및 면역활성 상승효과)

  • Shon, Mi-Yae
    • Journal of Life Science
    • /
    • v.17 no.12
    • /
    • pp.1634-1640
    • /
    • 2007
  • The 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid (ABTS), nitric oxide (NO) scavenging activities and ferric- reducing/antioxidant power (FRAP) assay against extracts of Kalopanax pictus (KP) were measured. Radical scavenging and antioxidant activities were increased depend on the concentration and the effects were enhanced by ascorbic acid (AA). KP extracts and AA had a good anti-proliferating activity against HepG2 cells by MTT assay and induces cells apoptosis, which was demonstrated by flow cytometric analysis. KP extracts and AA caused the arrest of cell-cycle progression at either G0-G1-phase or G2/M-phase, which might be depending upon the KP extracts concentration. In addition, KP extracts and AA are effective in enhancing immunity and nitric oxide production by RAW 264.7 macrophages cells. KP extracts and AA inhibited tumor cell growth and exerted antioxidant effects as compared to controls. These results demonstrate that simultaneous AA and KP extracts treatment could be useful in preventing the oxidative damage and anti-proliferating HepG2 cells, and are effective in enhancing immunomodulatory and antioxidant activity.

The Inhibitory Effect of Fermented Kalopanax pictus by Bioconversion on Endotoxemia and the Competitive Inhibitor Activity on LPS (생물전환을 통한 음나무발효물의 LPS에 대한 경쟁적 억제제 효과 및 내독소혈증 억제 효과)

  • Kim, Sung Phil;Lee, Wha Young;In, Su A;Seong, Eun Young;Kim, Jean Man;Nam, Seok Hyun
    • The Korean Journal of Food And Nutrition
    • /
    • v.32 no.2
    • /
    • pp.106-113
    • /
    • 2019
  • The objective of this study was to evaluate the effect of fermented Kalopanax pictus (KP-F) on macrophage activation and its effect as a competitive inhibitor of LPS and inhibitory effect on endotoxemia. The results showed that KP-F could activate macrophage in a dose-dependent manner, and KP-F was confirmed to act as a ligand for TLR4. Also, it was found that KP-F did not exhibit the same biotoxicity as LPS in intraperitoneal injection, and that it could suppress the neutrophil migration induced by LPS administration. In normal mice, the body weight, tissue weight, and amount of nitrite and pro-inflammatory cytokines in serum showed no significant changes with KP-F diet for 2 weeks, confirming that administration of KP-F in normal mice did not lead to over activation of immune response and biotoxicity. In the mouse model of endotoxemia induced by LPS and D-galactosamine(D-GalN) in sub-lethal dose, the diet of KP-F effectively inhibited the amount of nitrite and cytokines in the blood, and thus was found to be able to relieve the hepatic and kidney injury. In addition, in the endotoxemia mouse model induced by LPS and D-GalN of lethal dose, the survival rate was increased by KP-F diet in a dose-dependent manner.

The Stem Bark of Kalopanax pictus Exhibits Anti-inflammatory Effect through Heme Oxygenase-1 Induction and NF-${\kappa}B$ Suppression

  • Bang, Soo-Young;Park, Ga-Young;Park, Sun-Young;Kim, Ji-Hee;Lee, Yun-Kyoung;Lee, Sang-Joon;Kim, Young-Hee
    • IMMUNE NETWORK
    • /
    • v.10 no.6
    • /
    • pp.212-218
    • /
    • 2010
  • Backgroud: The stem bark of Kalopanax pictus (KP) has been used in traditional medicine to treat rheumatoidal arthritis, neurotic pain and diabetes mellitus in China and Korea. In this study, the mechanism responsible for anti-inflammatory effects of KP was investigated. Methods: We examined the effects of KP on NO production, nitric oxide synthase (iNOS) and HO-1 expression, NF-${\kappa}B$, Nrf2 and MAPK activation in mouse peritoneal macrophages. Results: The aqueous extract of KP inhibited LPS-induced NO secretion as well as inducible iNOS expression, without affecting cell viability. KP suppressed LPS-induced NF-${\kappa}B$ activation, phosphorylation and degradation of $I{\kappa}B-{\alpha}$, phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK). Furthermore, KP induced HO-1 expression and Nrf2 nuclear translocation. Conclusion: These results suggest that KP has the inhibitory effects on LPS-induced NO production in macrophages through NF-${\kappa}B$ suppression and HO-1 induction.

Effects of Fermented Kalopanax pictus on oxidative damage of neurofilament protein (신경세사 단백질의 산화적 손상에 엄나무 발효물이 미치는 영향)

  • Kang, Jung Hoon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.1
    • /
    • pp.194-204
    • /
    • 2018
  • This study was to investigate the effect of the extract(KP-HE) from Kalopanax pictus(KP) fermented with Hericium erinaceum(HE) mycelium on oxidative modification of neurofilament-L(NF-L) which is closely related to neurodegenerative disorders. The oxidative modification of NF-L was induced by AAPH producing peroxyl radicals in solution, and KP, HE, and KP-HE was investigated. KP and HE did not protect NF-L against peroxyl radical-mediated NF-L modification whereas KP-HE significantly prevented NF-L modification induced by peroxyl radical. KP-HE inhibited the formation of dityrosine in oxidative modification of NF-L and stimulated the peroxyl radical scavenging activity. The effects of KP, HE, and KP-HE on the modification of NF-L by tetrahydropapaveroline(THP), a neurotoxin found in patients with Parkinson's disease was investigated. KP-HE also prevented THP-mediated NF-L modification as compared to KP and HE. In addition, KP-HE significantly inhibited the formation of dityrosine in oxidative modified NF-L and enhanced the inhibition of reactive oxygen species(ROS) was generated by THP. The results suggested that KP-HE can contribute to protected cell from oxidative stress was induced by ROS and neurotoxin. Therefore, KP-HE could potentially be used as a valuable functional food ingredient to prevent neurodegenerative disorders.

Validation of Simultaneous Analysis Method of Standard Compounds in Fermented Kalopanax pictus Nakai by Bioconversion (생물전환을 통한 음나무발효물의 지표성분 설정 및 동시분석법 검증)

  • Jang, Won Hui;Lee, Wha Young;Lee, Bong Jin;Kim, Jean Man;Park, Seon Ju
    • The Korean Journal of Food And Nutrition
    • /
    • v.32 no.2
    • /
    • pp.148-154
    • /
    • 2019
  • The aim of this study was to select compounds for the standardization of fermented Kalopanax pictus Nakai (KP-F), to develop the analysis method using HPLC-PDA and to perform method validation. KP-F is a fermented powder developed to improve the original physiological activities and create a new functionality. Eleutheroside E, Acanthoside B, and Syringaresinol were selected as the standard compounds and developed our own method for simultaneous analysis. The analyte was isolated using C18 column with a gradient elution of 0.05 M phosphoric acid in water and methanol as the mobile phase at a flow rate of 1 mL/min and detected at 210 nm. As a result, all standard compounds showed good linearity with an $R^2$ (coefficient of correlation) of 1.000 and for the limit of detection range of $0.710{\sim}0.831{\mu}g/mL$, and the limit of quantification as $2.150{\sim}2.520{\mu}g/mL$. The precision was RSD (%) of less than 4.80%, while the accuracy was 4.70%>RSD (%) for the range 102.44~110.48%. In conclusion, the developed analysis method is suitable for the detection of Eleutheroside E, Acanthoside B, and Syringaresinol in KP-F.

Kalopanaxsaponin B Ameliorates TNBS-Induced Colitis in Mice

  • Jeong, Jun-Ju;Jang, Se-Eun;Joh, Eun-Ha;Han, Myung-Joo;Kim, Dong-Hyun
    • Biomolecules & Therapeutics
    • /
    • v.20 no.5
    • /
    • pp.457-462
    • /
    • 2012
  • The stem-bark of Kalopanax pictus (KP, family Araliaceae), of which main constituent is kalopanaxsaponin B, has been used for asthma, rhinitis, and arthritis in Chinese traditional medicine. To clarify anticolitic effect of KP, we examined anti-inflammatory effect of KP extract and kalopanaxsaponin B in lipopolysaccharide (LPS)-stimulated peritoneal macrophage and 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitic mice. Of KP extracts, KP BuOH-soluble fraction most potently inhibited LPS-induced IL-$1{\beta}$, IL-6 and TNF-${\alpha}$ expression, as well as NF-${\kappa}B$ activation. However, KP BuOH fraction increased IL-10, an anti-inflammatory cytokine. KP BuOH fraction also inhibited colon shortening and myeloperoxidase activity in TNBS-induced colitic mice. KP BuOH fraction also potently inhibited the expression of the pro-inflammatory cytokines, IL-$1{\beta}$, IL-6, and TNF-${\alpha}$ as well as the activation of NF-${\kappa}B$. Kalopanaxsaponin B, a main constituent of KP, inhibited TNBS-induced colonic inflammation, including colon shortening, and TNBS-increased myeloperoxidase activity pro-inflammatory cytokine expression and NF-${\kappa}B$ activation in mice. Based on these findings, KP, particularly its main constituent, kalopanaxsaponin B, may ameliorate colitis by inhibiting NF-${\kappa}B$ pathway.

In vivo Antinociceptive Antiinflamatory and Antioxidative Effects of the Leaf and Stem Bark of Kalopanax pictus in Rats (음나무 잎 및 수피의 진통소염효과 및 아주반트로 유발된 산화적 스트레스에 대한 효과)

  • Park, Hee-Juhn;Nam, Jung-Hwan;Jung, Hyun-Ju;Kim, Won-Bae;Park, Kwang-Kyun;Chung, Won-Yoon;Choi, Jong-Won
    • Korean Journal of Pharmacognosy
    • /
    • v.36 no.4 s.143
    • /
    • pp.318-323
    • /
    • 2005
  • The leaves (KPL) of Kalopanax pictus (KP) are used as a vegetable or a functional food in Korean society. The stem bark (Kalopanacis Cortex, KPS) has been traditionally used to treat neurotic pain, rheumatoid arthritis and diabetic disease. This research was undertaken to demonstrate that the leaf extract of KP (KPL) has also the antinociceptive and antiinflammatory effects like the extract (KPS) of Kalopanacis Cortex and to compare the activity levels of several extracts obtained from KP. Antinociceptive and antiinflammatory effects were measured against the extracts described as followings; KPL-1 (the MeOH extract obtained from the leaf shoot of KP collected on May), KPL-2 (the MeOH extract from KP collected on June), KPL-3 (the MeOH ectract from KP with no thorns), KPS-1 (MeOH extract from KPS of a Korean habitat), KPS-2 (MeOH extract from KPS of a Chinese habitat). The antimociceptive test undertaken by acetic acid-induced writhing, hot plate-, and tail-flick methods using mice. The anti-inflammatory test was also undertaken by measuring the edema in the carrageenan-induced test. The order of activity potency in the antinociceptive and antiinflammatory assays was commonly shown as followings: KPL-3>KPS>1>KPS-2>KPL-1>KPL-2. This order was also observed in acetic acid-induced vascular permeability test. The antiinflammatory activity in carrageenan-induced assay was also observed as the following order: KPL-3>KPS- 1>PS-2>KPL-1>KPL-2. In addition, adjuvant-induced rats were used for a model to assess the oxidative stress. Treatment of the rat with the extracts reduced serum thiobarbituric acid-reactive substances (TBARS), hydroxy radical(OH) and superoxide dismutase(SOD) activity caused by FCA together together with the inhibition of hepatic TBARS level and lipofuscin content. The above finding suggests that the leaf extract has the antinociceptive and antinflammatory activity. It is also suggested that KPL-3 with more potent activity than other tested extracts could be developed for a new available biomaterial.

Antioxidant and Anti-amyloid Activities of Fermented Kalopanax pictus (엄나무 발효물의 항산화 및 항아밀로이드 활성)

  • Kang, Jung Hoon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.2
    • /
    • pp.389-398
    • /
    • 2018
  • This study was to investigate the antioxidant and anti-amyloid activities of the extract (KP-HE) from Kalopanax pictus (KP) fermented with Hericium erinaceum (HE) mycelium. Antioxidant activity was evaluated based on 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) radical(ABTS) scavenging assays. In all assays, the extracts from KP, HE and KP-HE had the potential for antioxidant activities. However, antioxidant activity of KP-HE significantly scavenged DPPH radical as compared to the KP and HE. The result suggested that the antioxidant component was increased in the process of KP fermented with HE. KP-HE was shown to significantly inhibite peroxyl radical-mediated DNA strand breakage whereas KP and HE did not inhibit DNA strand breakage. The aggregation of the amyloid-${\beta}$ ($A{\beta}$) peptide is involved in the pathological process of Alzheimer's disease(AD). In this study, the effects of KP, HE and KP-HE on the aggregation of $A{\beta}_{1-42}$ were investigated. KP and HE had little effect on $A{\beta}$ aggregation and KP-HE effectively inhibited $A{\beta}$ aggregation. KP-HE effectively inhibited $A{\beta}$ induced cell death and significantly increased of the 20.3% cell survival at $300{\mu}g/mL$ concentration. KP-HE also decreased intracellular reactive oxygen specie levels in $A{\beta}$-treated cells. The results suggested that KP-HE had antioxidant and anti-amyloid activities. Therefore, KP-HE could potentially be used as a valuable functional food ingredient to prevent neurodegenerative disorders such as AD.

The anti-inflammatory activity of Kalopanax pictus bark extract (V). Effects of saponins from KP on $NF-_K/B$ and elastase activities

  • Li, Da-Wei;Ahn, Kwang-Seok;Joo, Eun-Ji;Cho, So-Yean;Jeong, Choon-Sik;Lee, Eun-Bang;Kim, Yeong-Shik
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.255.3-256
    • /
    • 2002
  • In the previous studies. we confirmed the anti-inflammatory components of Kalopanax pictus bark using activity-guided fractionation in vivo. For the elucidation of anti-inflammatory mechanism, we evaluated the effects of these components on the inhibition of NF-$\sub$K/B activity and human leukocyte elastase. A cell-based assay system developed in our laboratory was used in transfectant RAW 264.7 cells. (omitted)

  • PDF