DOI QR코드

DOI QR Code

Kalopanaxsaponin B Ameliorates TNBS-Induced Colitis in Mice

  • Jeong, Jun-Ju (Department of Life and Nanopharmaceutical Sciences and Department of Pharmaceutical Science, Kyung Hee University) ;
  • Jang, Se-Eun (Department of Food and Nutrition, Kyung Hee University) ;
  • Joh, Eun-Ha (Department of Life and Nanopharmaceutical Sciences and Department of Pharmaceutical Science, Kyung Hee University) ;
  • Han, Myung-Joo (Department of Food and Nutrition, Kyung Hee University) ;
  • Kim, Dong-Hyun (Department of Life and Nanopharmaceutical Sciences and Department of Pharmaceutical Science, Kyung Hee University)
  • Received : 2012.07.16
  • Accepted : 2012.09.03
  • Published : 2012.09.30

Abstract

The stem-bark of Kalopanax pictus (KP, family Araliaceae), of which main constituent is kalopanaxsaponin B, has been used for asthma, rhinitis, and arthritis in Chinese traditional medicine. To clarify anticolitic effect of KP, we examined anti-inflammatory effect of KP extract and kalopanaxsaponin B in lipopolysaccharide (LPS)-stimulated peritoneal macrophage and 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitic mice. Of KP extracts, KP BuOH-soluble fraction most potently inhibited LPS-induced IL-$1{\beta}$, IL-6 and TNF-${\alpha}$ expression, as well as NF-${\kappa}B$ activation. However, KP BuOH fraction increased IL-10, an anti-inflammatory cytokine. KP BuOH fraction also inhibited colon shortening and myeloperoxidase activity in TNBS-induced colitic mice. KP BuOH fraction also potently inhibited the expression of the pro-inflammatory cytokines, IL-$1{\beta}$, IL-6, and TNF-${\alpha}$ as well as the activation of NF-${\kappa}B$. Kalopanaxsaponin B, a main constituent of KP, inhibited TNBS-induced colonic inflammation, including colon shortening, and TNBS-increased myeloperoxidase activity pro-inflammatory cytokine expression and NF-${\kappa}B$ activation in mice. Based on these findings, KP, particularly its main constituent, kalopanaxsaponin B, may ameliorate colitis by inhibiting NF-${\kappa}B$ pathway.

Keywords

References

  1. Atreya, R., Mudter, J., Finotto, S., Müllberg, J., Jostock, T., Wirtz, S., Schütz, M., Bartsch, B., Holtmann, M., Becker, C., Strand, D., Czaja, J., Schlaak, J. F., Lehr, H. A., Autschbach, F., Schürmann, G., Nishimoto, N., Yoshizaki, K., Ito, H, Kishimoto, T., Galle, P. R., Rose-John, S. and Neurath, M. F. (2000) Blockade of interleukin 6 trans signaling suppresses T-cell resistance against apoptosis in chronic intestinal inflammation: evidence in crohn disease and experimental colitis in vivo. Nat. Med. 6, 583-588. https://doi.org/10.1038/75068
  2. Binder, V. (2004) Epidemiology of IBD during the twentieth century: an integrated view. Best Pract. Res. Clin. Gastroenterol. 18, 463-479. https://doi.org/10.1016/j.bpg.2003.12.002
  3. Blanqué, R., Meakin, C., Millet, S., and Gardner, C. R. (1996) Hypothermia as an indicator of the acute effects of lipopolysaccharides: comparison with serum levels of IL1 ${\beta}$, IL6 and TNF ${\alpha}$. Gen. Pharmacol. 27, 973-977. https://doi.org/10.1016/0306-3623(95)02141-8
  4. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  5. Cario, E. and Podolsky, D. K. (2000) Differential alteration in intestinal epithelial cell expression of toll-like receptor 3 (TLR3) and TLR4 in inflammatory bowel disease. Infect. Immun. 68, 7010-7017. https://doi.org/10.1128/IAI.68.12.7010-7017.2000
  6. Choi, J., Huh, K., Kim, S. H., Lee, K. T., Park, H. J. and Han, Y. N. (2002) Antinociceptive and anti-rheumatoidal effects of Kalopanax pictus extract and its saponin components in experimental animals. J. Ethnopharmacol. 79, 199-204. https://doi.org/10.1016/S0378-8741(01)00383-X
  7. Chow, J. C., Young, D. W., Golenbock, D. T., Christ, W. J. and Gusovsky, F. (1999) Toll-like receptor-4 mediates lipolysaccharide-induced signal transduction. J. Biol. Chem. 274, 10689-10692. https://doi.org/10.1074/jbc.274.16.10689
  8. Huang, Y. T., Hwang, J. J., Lee, P. P., Ke, F. C., Huang, J. H., Huang, C. J., Kandaswami, C., Middleton Jr E. and Lee, M. T. (1999) Effects of luteolin and quercetin, inhibitors of tyrosine kinase, on cell growth and metastasis-associated properties in A431 cells overexpressing epidermal growth factor receptor. Br. J. Pharmacol. 128, 999-1010. https://doi.org/10.1038/sj.bjp.0702879
  9. Ingalls, R. R., Heine, H., Lien, E., Yoshimura, A. and Glenbock, D. (1999) Lipopolysaccahride recognition, CD14, and lipopolysaccharide receptors. Infec. Dis. Clin. North Am. 13, 341-353. https://doi.org/10.1016/S0891-5520(05)70078-7
  10. Joh, E. H. and Kim, D. H. (2011) Kalopanaxsaponin A ameliorates experimental colitis in mice by inhibiting IRAK-1 activation in the NF-${\kappa}B$ and MAPK pathways. Br. J. Pharmacol. 162, 1731-1742. https://doi.org/10.1111/j.1476-5381.2010.01195.x
  11. Joh, E. H., Lee, I. A., Jung, I. H. and Kim, D. H. (2011) Ginsenoside Rb1 and its metabolite compound K inhibit IRAK-1 activation--the key step of inflammation. Biochem. Pharmacol. 82, 278-286. https://doi.org/10.1016/j.bcp.2011.05.003
  12. Joh, E. H., Lee, I. A. and Kim, D. H. (2012) Kalopanaxsaponins A and B isolated from Kalopanax pictus ameliorate memory deficits in mice. Phytother. Res. 26, 546-551. https://doi.org/10.1002/ptr.3596
  13. Jung, H. C., Eckmann, I., Yang, S. K., Panja, A., Fierer, J., Morzycka-Wroblewska, E. and Kagnoff, M. F. (1995) A distinct array of proinflammatory cytokine is expressed in human colon epithelia cells in response to bacterial invasion. J. Clin. Invest. 95, 55-65. https://doi.org/10.1172/JCI117676
  14. Kim, Y. K., Kim, R. G., Park, S. J., Ha, J. H., Choi, J. W., Park, H. J. and Lee, K. T. (2002) In vitro antiinflammatory activity of kalopanaxsaponin A isolated from Kalopanax pictus in murine macrophage RAW 264.7 cells. Biol. Pharm. Bull. 25, 472-476. https://doi.org/10.1248/bpb.25.472
  15. Kotanidou, A., Xagorari, A., Bagli, E., Kitsanta, P., Fotsis, T., Papapetropoulos, A. and Roussos, C. (2002) Luteolin reduces lipopolysaccharide-induced lethal toxicity and expression of proinflammatory molecules in mice. Am. J. Respir. Crit. Care Med. 165, 818-823. https://doi.org/10.1164/ajrccm.165.6.2101049
  16. Lee, I. A., Bae, E. A., Hyun, Y. J. and Kim, D. H. (2010a) Dextran sulfate sodium and 2,4,6-trinitrobenzene sulfonic acid induce lipid peroxidation by the proliferation of intestinal gram-negative bacteria in mice. J. Inflamm. 7, 7. https://doi.org/10.1186/1476-9255-7-7
  17. Lee, I. A., Hyun, Y. J. and Kim, D. H. (2010b) Berberine ameliorates TNBS-induced colitis by inhibiting lipid peroxidation, enterobacterial growth and NF-${\kappa}B$ activation. Eur. J. Pharmacol. 648, 162-170. https://doi.org/10.1016/j.ejphar.2010.08.046
  18. Park, H. J., Kim, D. H., Choi, J. W., Park, J. H. and Han, Y. N. (1998) A potent anti-diabetic agent from Kalopanax pictus. Arch. Pharm. Res. 21, 24-29. https://doi.org/10.1007/BF03216748
  19. Park, H. J., Kwon, S. H., Lee, J. H., Lee, K. H., Miyamoto, K. and Lee, K. T. (2001) Kalopanaxsaponin A is a basic saponin structure for the anti-tumor activity of hederagenin monodesmosides. Planta. Med. 67, 118-121. https://doi.org/10.1055/s-2001-11516
  20. Radema, S. A., van Deventer, S. J. and Cerami, A. (1991) Interleukin 1 ${\beta}$ is expressed predominantly by enterocytes in experimental colitis. Gastroenterology 100, 1180-1186. https://doi.org/10.1016/0016-5085(91)90767-F
  21. Rafii, F., Ruseler-Van Embden, J. G. and van Lieshout, L. M. (1999) Changes in bacterial enzymes and PCR profiles of fecal bacteria from a patient with ulcerative colitis before and after antimicrobial treatments. Dig. Dis. Sci. 44, 637-642. https://doi.org/10.1023/A:1026634229934
  22. Shanahan, F. (2002) Crohn's disease. Lancet 359, 62-69. https://doi.org/10.1016/S0140-6736(02)07284-7

Cited by

  1. Simultaneous quantitative analysis of nine triterpenoid saponins for the quality control ofStauntonia obovatifoliolaHayata subsp.intermediastems vol.37, pp.24, 2014, https://doi.org/10.1002/jssc.201400771
  2. Functional Roles of p38 Mitogen-Activated Protein Kinase in Macrophage-Mediated Inflammatory Responses vol.2014, 2014, https://doi.org/10.1155/2014/352371
  3. 생물전환을 통한 음나무발효물의 LPS에 대한 경쟁적 억제제 효과 및 내독소혈증 억제 효과 vol.32, pp.2, 2019, https://doi.org/10.9799/ksfan.2019.32.2.106
  4. Role of intracellular signaling pathways and their inhibitors in the treatment of inflammation vol.29, pp.3, 2012, https://doi.org/10.1007/s10787-021-00813-y