Browse > Article
http://dx.doi.org/10.12925/jkocs.2018.35.1.194

Effects of Fermented Kalopanax pictus on oxidative damage of neurofilament protein  

Kang, Jung Hoon (Department of Biomedical Science, Cheongju University)
Publication Information
Journal of the Korean Applied Science and Technology / v.35, no.1, 2018 , pp. 194-204 More about this Journal
Abstract
This study was to investigate the effect of the extract(KP-HE) from Kalopanax pictus(KP) fermented with Hericium erinaceum(HE) mycelium on oxidative modification of neurofilament-L(NF-L) which is closely related to neurodegenerative disorders. The oxidative modification of NF-L was induced by AAPH producing peroxyl radicals in solution, and KP, HE, and KP-HE was investigated. KP and HE did not protect NF-L against peroxyl radical-mediated NF-L modification whereas KP-HE significantly prevented NF-L modification induced by peroxyl radical. KP-HE inhibited the formation of dityrosine in oxidative modification of NF-L and stimulated the peroxyl radical scavenging activity. The effects of KP, HE, and KP-HE on the modification of NF-L by tetrahydropapaveroline(THP), a neurotoxin found in patients with Parkinson's disease was investigated. KP-HE also prevented THP-mediated NF-L modification as compared to KP and HE. In addition, KP-HE significantly inhibited the formation of dityrosine in oxidative modified NF-L and enhanced the inhibition of reactive oxygen species(ROS) was generated by THP. The results suggested that KP-HE can contribute to protected cell from oxidative stress was induced by ROS and neurotoxin. Therefore, KP-HE could potentially be used as a valuable functional food ingredient to prevent neurodegenerative disorders.
Keywords
Kalopanax pictus; reactive oxygen species; NF-L; neurotoxin; neurodegenerative disorder;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. Perrot, J. Eyer, “Neuronal intermediate filaments and neurodegenerative disorders,” Brain Res. Bulletin., Vol. 80, No. 4-5, pp. 282-295, (2009).   DOI
2 U. Lendahl, L. B. Zimmerman, R. D. McKay, “CNS stem cells express a new class of intermediate filament protein,” Cell, Vol. 60, No. 4, pp. 585-595, (1990).   DOI
3 K. Kosaka, S. Oyanagi, M. Matsushita, A. Hori, “Presenile dementia with Alzheimer-, Pick-and Lewy-body changes,” Acta. Neuropathol. (Berl), Vol. 36, No. 3, pp. 221-233, (1976).   DOI
4 I. G. Kyeong, W. S. Eum, S. Y. Choi, J. H. Kang, “Oxidative modification of neurofilament-L and neuronal cell death induced by the catechol neurotoxin, tetrahydropapaveroline,” Toxicol. Lett., Vol. 217, No. 1, pp. 59-66, (2013).   DOI
5 J. D. Hwang, J. S. Choi, J. B. Kim, S. L. Yang, “Antioxidant Activities of Bark Extracts from Kalopanax picuts,” J. Invest. Cosmet., Vol. 7, No. 4, pp. 329-337, (2011).   DOI
6 M. H. Kim, S. Y. Park, Y. J. Jeong, K. Y. Yoon, “Sensory Properties of Kalopanax pictus and Cedrela sinensis Shoots under Different Blanching Conditions and with Different Thawing Methods,” Korean J. Food Preserv., Vol. 19, No. 2, pp. 201-208, (2012).   DOI
7 H. Kawagishi, A. Shimada, K. Shizuki, H. Mori, H. Sakamoto, S. Furukawa, E. F. Erinacines, “Stimulators of nerve growth factor (NGF)-synthesis, from the myclia of Hericium erinaceum,” Tetrahedron Lett., Vol. 41, No. 2, pp. 7399-7402, (1996).
8 S. H. Park, J. S. Chang, K. R. Lee, “Effect of Hericium erinaceius extract on cancer cell growth and expression of cell cycle associated proteins,” J of Korean Society of Food Sci. Nutr., Vol. 32, No. 6, pp. 931-936, (2003).   DOI
9 M. A. Choi, N. Y. Park, S. M. Woo, Y. J. Jeong, S. R. Shin, "Characteristics of Hericium erinaceus and its extracts," Korean J. Food Preser.,., Vol. 10, No. 4, pp. 560-564, (2003).
10 T. Mizuno, T. Wasa, H Ito, C. Suzuki, N. Ukai, “Antitumor-active polysaccharides isolated from the fruiting body of Hericium erinaceum, an edible and medicinal mushrooms called yamabushiotake or houtou,” Biosci. Biotechnol. Biochem., Vol. 56, No. 2, pp. 347-348, (1992).   DOI
11 Z. Liu, Q. Wang, J. Cu, L. Wang L. Xiong, W. Wang, D. Li, N. Liu, Y. Wu, C. Mao, "Systemic Screening of Strains of the Lion's Mane Medicinal Mushroom Hericium erinaceus(Higher Basidiomycetes) and Its Protective Effects on A${\beta}$ -Triggered Neurotoxicity in PC12 Cells," Int. J. Med. Mushrooms., Vol. 17., No. 3 pp. 19-29, (2015).
12 T. K. Hyun, J. S. Kim, “The pharmacology and clinical properties of Kalopanax pictus,” J. Med. Plants Res., Vol. 3, No. 9, pp. 613-620, (2009).
13 K. A. Yearul, K. Shuichi, “Dietary mushroom reduce blood pressure in spontaneously hypertensive rat,” J. Nutr. Sci. Vitaminol., Vol. 35, No. 1, pp. 91-98, (1989).   DOI
14 N. H. Kim, J. H. Kang, “Oxidative modification of neurofilament-L by copper-catalyzed reaction,” J. Biochem. Mol. Biol., Vol. 36, No. 5, pp. 488-492, (2003).
15 H. Ohkawa, N. Ohishi, K. Yagi, “Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction,” Anal. Biochem., Vol. 95, No. 2, pp. 351-358, (1979).   DOI
16 J. A. Buege, S. D. Aust, "Microsomal lipid peroxidation," Methods Enzymol., Vol. 52, pp. 302-310, (1978).
17 D. O. Kim, K. W. Lee, C. Y. Lee, “Vitamin C equivalent antioxidant capacity(VCEAC) of phenolic phytochemicals,” J. Agri. Food Chem., Vol. 50, No. 13, pp. 3713-3717, (2002).   DOI
18 I. V. Mersiyanova, A. V. Perepelov. A. V. Polyakov, V. F. Sitnikov, E. L. Dadali, R. B. Oparin, A. N. Petrin, O. V. Evgrafov, “A new variant of Charcot-Marie-Tooth disease type 2 is probably the result of a mutation in the neurofilament-light gene,” Am. J. Hum. Genet., Vol. 67, No. 1, pp. 37-46, (2000).   DOI
19 B. S. Berlett, E. R. Stadtman, “Protein oxidation in aging, disease, and oxidative stress,” J. Biol. Chem., Vol. 272, No. 33, pp. 20313-20316, (1997).   DOI
20 E. R. Stadtman, B, S, Berlett, “Fenton chemistry: amino acid oxidation,” J. Biol. Chem., Vol. 266, No. 26, pp. 17201-17211, (1991).
21 R. A. Floyd, “Antioxidants, oxidative stress, and degenerative neurological disorders,” Proc. Soc. Exp. Biol. Med., Vol. 222, No. 3, pp. 236-245, (1999).   DOI
22 R. Deitrich, V. Erwin, "Biogenic amine-aldehyde condensation products: tetrahydroisoquinolines and tryptolines (${\beta}$ -carbolines)," Ann. Rev. Pharmacol. Toxicol., Vol. 20, pp. 55-80, (1980).   DOI
23 F. De Marco, M. Perluigi, M. L. Marcante, R. Coccia, C. Foppoli, C. Blarzino, M. A. Rosei, “ Cytotoxicity of dopamine-derived tetrahydroisoquinolines on melanoma cells,” Biochem. Pharmacol., Vol. 64, No. 10, pp. 1503-1512, (2002).   DOI