• Title/Summary/Keyword: KHNES

Search Result 1,031, Processing Time 0.175 seconds

Note on the Two-Microphone Methods for the Measurement of Acoustic Impedance (음향 임피던스 측정을 위한 이중 마이크로폰 기법에 대한 고찰)

  • SEO, SEONGHYEON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.2
    • /
    • pp.163-169
    • /
    • 2018
  • The present article discusses about the measurement techniques of acoustic impedance that becomes one of the important acoustic characteristics of various boundaries found inside of propulsion systems. Acoustic characteristics including acoustic impedance and reflection coefficient can be often assessed and estimated by use of the two-microphone method. Theoretical expressions of acoustic impedance and reflection coefficient measured in an impedance tube are presented for both cases with mean flow and without flow, and the practical application of the method through calibration is also provided. The acoustic impedance and the reflection coefficient are related with axial locations of microphones, thermodynamic characteristics of gas inside, and the transfer function between the pressure wave measurements at multiple locations.

Fundamental Study of Unit Proton Exchange Membrane Electrolysis for Realtime Detection of Tritium (실시간 삼중수소 검출을 위한 단위 양성자 교환 막 전기분해 기초연구)

  • CHAE, JONGMIN;YU, SANGSEOK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.2
    • /
    • pp.226-234
    • /
    • 2018
  • Even though the nuclear power plants has many advantages, safety issues of nuclear power plants are crucial factors of reliable operation. A tritium detector is a useful sensor to analyze amount of exposed radiation from the nuclear power plants. Currently, concentration of underwater tritium is measured precisely but it takes very long time. Since electrolysis is extracted hydrogen from the coolant of nuclear power plant, it can motivate to develop new type of real-time sensor. In this study, Proton Exchange Membrane (PEM) electrolyzer is studied for candidate as preprocessor of real-time tritium detector. Characteristics of the unit PEM electrolyzer were experimentally investigated. A simulation model is developed to understand physical behavior of unit PEM electrolyzer under dynamic operation.

The Significance of Long-term Perception on Renewable Energy and Climate Change (신재생에너지와 기후변화에 대한 장기간 인식조사가 갖는 함의)

  • AHN, JOONG WOO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.1
    • /
    • pp.117-123
    • /
    • 2018
  • The long-term perception investigation of environment is needed for the persistence of each country's policy on climate change, which is greatly influenced by external factors. Long term data on perception and attitudes of people's thought can be a big data point for climate change and consistent policies can be implemented with the need for public demand. Information on the perception of the general public regarding the environment should be carried out as a basis for the national environmental policy.

Thermal Analysis of LaNi5 Hydride by Volumetric Method (부피법 자동장치를 이용한 LaNi5 수소화합물의 열분석 장치개발)

  • HAN, JEONG-SEB;KIM, SUNJUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.1
    • /
    • pp.25-31
    • /
    • 2018
  • To apply Sievert's type apparatus to thermal analysis of hydrogen absorption materials, the dehydrogenation of $LaNi_5$ system was investigated. As the initial wt% of hydrogen was increased from 0.44 to 1.24 wt%, the peak temperature of evolution rate shifted to higher temperature. However, with the initial wt% of hydrogen higher than 0.95 wt%, the peak temperature of evolution rate did not change. As the heating rate was increased, the peak temperature increased; the peak temperatures for heating rates 0.5, 1.0 and 1.5 K/min were 262.2, 264.1, and 265.9 K respectively. The Sievert's type automatic apparatus can be successively applied to the thermal analysis of $LaNi_5$ hydride.

A Study on Behavior of Surface Oxidation with Steel Type (강판 종별 표면 산화 거동에 관한 연구)

  • KIM, SEULGI;LEE, KEEMAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.4
    • /
    • pp.378-385
    • /
    • 2018
  • An experimental study was conducted to investigate behavior of surface oxidation with steel type. The excess entalphy combustion in porous media system was applied to implement the direct radiation heating system. The surface oxidation thickness (SOT) in fuel-lean condition was thicker than the SOT in fuel-rich. Also, the SOT was increased by increasing residence time. Detailed explanations were given by SEM and EDS analysis.

Estimation of the Ammonia Refrigeration Cycle Using LNG Cold Heat (액화천연가스 냉열을 활용한 암모니아 냉동 사이클의 추산)

  • NOH, SANGGYUN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.4
    • /
    • pp.357-362
    • /
    • 2018
  • In this study, computer simulation and optimization works have been performed for a refrigeration cycle using ammonia as a refrigerant and also how much power was saved when the liquefied natural gas cold heat is replaced for the refrigeration cycle. PRO/II with PROVISION release 10.0 from Schneider electric company was used, and Peng-Robinson equation of the state model was selected for the modeling of the refrigeration cycle and LNG cold heat utilization process.

A Study on Optimization of Reformer for kW Class SOFC System (kW급 SOFC 시스템용 개질기 최적화)

  • YI, YONG;PARK, SE JIN;KIM, MIN SOO;SHIN, JANG SIK;SHIN, SEOCK JAE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.4
    • /
    • pp.317-323
    • /
    • 2018
  • Solid oxide fuel cell (SOFC) operates at high temperature, therefor has the advantage of higher power generation and using exhaust heat than other fuel cells. In particular, the reforming reaction can be performed inside the SOFC stack to reduce the cooling of the stack and the burden on the reformer reactor. In this study, the reformer structure, operating characteristics, and thermal efficiency were evaluated for the optimization design of a heat exchanger type reformer of a 1 kW SOFC system.

Analysis of Damage Range and Impact of On-Site Hydrogen Fueling Station Using Quantitative Risk Assessment Program (Hy-KoRAM) (정량적 위험성평가 프로그램(Hy-KoRAM)을 이용한 제조식 수소충전소 피해범위 및 영향 분석)

  • KIM, HYELIM;KANG, SEUNGKYU
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.5
    • /
    • pp.459-466
    • /
    • 2020
  • As the hydrogen industry grows, expansion of infrastructure for hydrogen supply is required, but the safety of hydrogen facilities is concerned due to the recent accidents at the Gangneung hydrogen tank and the Norwegian hydrogen fueling station. In this study, the damage range and impact analysis on the on-site hydrogen fueling station was conducted using Hy-KoRAM. This is a domestically developed program that adds functions based on HyRAM. Through this risk assessment, it was evaluated whether the on-site hydrogen fueling station meets international standards and suggested ways to improve safety.

Cathode Catalyst of Direct Borohydride/Hydrogen Peroxide Fuel Cell for Space Exploration (우주탐사용 직접 수소화붕소나트륨/과산화수소 연료전지의 환원극 촉매)

  • YU, SU SANG;OH, TAEK HYUN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.5
    • /
    • pp.444-452
    • /
    • 2020
  • This study investigated the cathode catalyst of direct borohydride/hydrogen peroxide fuel cells for space exploration. Various catalysts such as Au, Ag, and Ni were supported on multiwalled carbon nanotubes (MWCNTs). Various techniques, such as transmission electron microscopy, Brunauer-Emmett-Teller method, scanning electron microscopy, and X-ray diffraction were conducted to investigate the characteristics of the catalysts. Fuel cell tests were performed to evaluate the performance of the catalysts. Ag/MWCNTs exhibited better catalytic activity than the Ni/MWCNTs and better catalytic selectivity of the Au/MWCNTs. Ag/MWCNTs presented good catalytic activity and selectivity even at an elevated operating temperature. The performance of Ag/MWCNTs was also stable for up to 60 minutes.

Volumetric Hydrogen Sorbent Measurement at High Pressure and Cryogenic Condition - Basic Measurement Protocols (부피법을 이용한 고압·극저온 수소 흡착량 측정 방식의 기본 원리)

  • OH, HYUNCHUL
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.4
    • /
    • pp.349-356
    • /
    • 2016
  • Volumetric capacity metrics at cryogenic condition are critical for technological and commercial development. It must be calculated and reported in a uniform and consistent manner to allow comparisons among different materials. In this paper, we propose a simple and universal protocol for the determination of volumetric capacity of sorbent materials at cryogenic condition. Usually, the sample container volume containing porous sample at RT can be directly determined by a helium expansion test. At cryogenic temperatures, however, this direct helium expansion test results in inaccurate values of the sample container volume for microporous materials due to a significant helium adsorption, resulting significant errors in hydrogen uptake. For reducing this container volume error, therefore, we introduced and applied the indirect method such as 'volume correction using a non-porous material', showing a reliable cold volume correction.