Browse > Article
http://dx.doi.org/10.7316/KHNES.2018.29.1.25

Thermal Analysis of LaNi5 Hydride by Volumetric Method  

HAN, JEONG-SEB (Department of Material Science & Engineering, Dong-A University)
KIM, SUNJUNG (MIRAE SI)
Publication Information
Transactions of the Korean hydrogen and new energy society / v.29, no.1, 2018 , pp. 25-31 More about this Journal
Abstract
To apply Sievert's type apparatus to thermal analysis of hydrogen absorption materials, the dehydrogenation of $LaNi_5$ system was investigated. As the initial wt% of hydrogen was increased from 0.44 to 1.24 wt%, the peak temperature of evolution rate shifted to higher temperature. However, with the initial wt% of hydrogen higher than 0.95 wt%, the peak temperature of evolution rate did not change. As the heating rate was increased, the peak temperature increased; the peak temperatures for heating rates 0.5, 1.0 and 1.5 K/min were 262.2, 264.1, and 265.9 K respectively. The Sievert's type automatic apparatus can be successively applied to the thermal analysis of $LaNi_5$ hydride.
Keywords
$LaNi_5$; Thermal analysis; Volumetric method; Hydrogen storage material; Decomposition;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 D. G. Westlake, "A geometric model for the stoichiometry and interstitial site occupancy in hydrides (deuterides) of $LaNi_5$, $LaNi_4Al$ and $LaNi_4Mn$", J. of the Less Common Metals, Vol. 91, 1980, pp. 275-292.
2 J. S. Han and K. D. Park, "Thermal Analysis of Mg Hydride by Sievert's Type Automatic Apparatus", Kor. J. Met. Mater. Vol. 48, No. 12, 2010, pp. 1123-1129.   DOI
3 M. Fichtner, J. Engel, O. Fuhr, O. Kircher, and O. Rubner, "Nanocrystalline aluminium hydrides for hydrogen storage", Mater Sci. Eng. B, Vol. 108, 2004, pp. 42-47.   DOI
4 M. Tanniru, H. Y. Tien, and F. Ebrahimi, "Study of the dehydrogenation behavior of magnesium hydride", Scr. Materialia, Vol. 63, No. 58, 2010, pp. 58-60.   DOI
5 W. N. Yang, C. X. Shang, and Z. X. Guo, "Site density effect of Ni particles on hydrogen desorption of $MgH_2$", Int. J. Hydrogen, Eenergy, Vol. 35, 2010, pp. 4534-4552.   DOI
6 S. S. Liu, Y. Zhang, L. X. Sun, J. Zhang, J. N. Zhao, F. Xu, and F. L. Huang, "The dehydrogenation performance and reaction mechanisms of $Li_3AlH_6$ with $TiF_3$ additive", Int. J. Hydrogen Eenergy Vol. 35, 2010, pp. 4554-4561.   DOI
7 K. D. Park and J. S. Han, "A study on thermal analysis of $MgH_2$ powder made by hydriding chemical vapor deposition method", Kor. J. Chem. Eng., Vol. 29, No. 10, 2012, pp. 1336-1340.   DOI
8 V. D. Dobrovolsky, O. G. Ershova, Y. M. Solonin, R. A. Morozova, and E. M. Severyanina, "A study of the hydrogen sorption properties, thermal stability and the character of the chemical bonds of Ho and Lu Me-H hydrides through the use of thermodesorption and X-ray absorption spectroscopy", J. Alloys and Compounds, Vol. 490, 2010, pp. 68-73.   DOI
9 O. G. Ershova, V. D. Dobrovolsky, Y. M. Solonin, and O. Y. Khyzhun, "Hydrogen-sorption and thermodynamic characteristics of mechanically grinded TiH1.9 as studied using thermal desorption spectroscopy", J. Alloys and Compounds, Vol. 509, 2011, pp. 128-133.   DOI
10 J. S. Han, S. J. Kim, and D. I. Kim, "A Study of the Pressure-Composition-Temperature Curve of $Mg(BH_4)_2$ by Sievert's Type Apparatus", Kor. J. Met. Mater., Vol. 53, No. 11, 2015, pp. 815-819.   DOI
11 T. H. Hur, J. S. Han, J. H. Kim, and B. K. Kim, "Thermal Desorption of Hydrogen from $Mg_2Ni$ Hydrogen Storage Materials", J. Nanoscience and Nanotechnology, Vol. 11, 2011, pp. 1-5.   DOI
12 J. S. Han and K. D. Park, "Volumetric Thermal Analysis of Hydrogen Desorption from Mg-13.5 wt% Ni Hydride", Trans. of the Korean Hydrogen and New Energy Society, Vol. 26, No. 4, 2015, pp. 308-317.   DOI
13 A. Percheron-Guégan, C. Lartigue , J. C. Achard, P. Germi, and F. Tasset, "Neutron and X-ray diffraction profile analyses and structure of $LaNi_5$, $LaNi_5$−xAlx and $LaNi_5$−xMnx intermetallics and their hydrides (deuterides)", J. of the Less Common Metals, Vol. 74, 1980, pp. 1-12.   DOI